K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình

y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình

(Điều kiện: x>6; y>6)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)

Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình

NV
8 tháng 1 2023

Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ

Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:

\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)

Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)

14 tháng 7 2021

đây nhé

14 tháng 7 2021

Để hoàn thành 1 công việc, 2 tổ làm chung trong vòng 6h 
--> Trong 1 giờ, 2 tổ làm chung được 1/6 công việc. 
--> Sau 2h làm chung, số phần công việc đã hoàn thành là 2/6 công việc-->Số công việc còn lại là 1 - 2/6 =2/3 công việc 
Để làm xong 2/3 công việc còn lại, tổ 1 đã mất 10h, vậy số phần công việc mà tổ 1 làm độc lập trong 1 giờ là: 2/3 : 10 =1/15 công việc--> Nếu làm riêng thì tổ 1 sẽ mất 15h để hoàn thảnh cả công việc. 
Trong 1 h, 2 tổ làm chung được 1/6 công việc nhưng trong 1/6 công việc làm được đó tổ 1 đã làm 1/15 công việc--> Nếu làm độc lập thì trong 1 h tổ 2 sẽ hoàn thành: 1/6 - 1/15 = 1/10 công việc 
--> Nếu làm riêng thì tổ 2 sẽ mất 10 h để hoàn thành cả công việc.

12 tháng 6 2021

Gọi thời gian tổ I hoàn thành công việc riêng là x (x>0, giờ),

thời gian tổ II hoàn thành công việc riêng là y (y>0, giờ)

Trong 1h, tổ I làm được \(\frac{1}{x}\)( công việc )

Trong 1h, tổ II làm được \(\frac{1}{y}\)( công việc )

Trong 1h, cả hai tổ làm được \(\frac{1}{6}\)( công việc )

nên ta có phương trình:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\left(1\right)\)

Trong 10h, tổ I làm được \(\frac{1}{10}\)( công việc )

Vì sau 2h làm chung thì tổ II được điều đi làm việc khác, tổ I hoàn thành công việc còn lại trong 10h nên ta có phương trình: 

\(2.\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{10}{x}=1\)

\(\Leftrightarrow\) \(2.\frac{1}{6}+\frac{10}{x}=1\)

\(\Leftrightarrow\)\(\frac{1}{3}+\frac{10}{x}=1\)

\(\Leftrightarrow\)\(\frac{10}{x}=\frac{2}{3}\)

\(\Leftrightarrow\)\(x=15\)( thỏa mãn điều kiện )

Thay vào (1) ⇒ \(\frac{1}{15}+\frac{1}{y}=\frac{1}{6}\)

\(\Leftrightarrow\)\(\frac{1}{y}=\frac{1}{10}\)

\(\Leftrightarrow\)\(y=10\)

Vậy thời gian tổ I hoàn thành công việc riêng là 15h,

thời gian tổ II hoàn thành công việc một mình là 10h.

DD
27 tháng 1 2021

Gọi số giờ nếu làm riêng thì mỗi đội phải làm lần lượt là \(a,b\)(giờ) (\(a,b>0\)).

Mỗi giờ hai đội lần lượt làm được số phần công việc là: \(\frac{1}{a},\frac{1}{b}\)(phần).

Theo bài ta ta có hệ phương trình: 

\(\hept{\begin{cases}6\left(\frac{1}{a}+\frac{1}{b}\right)=1\\2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{10}{a}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{15}\\\frac{1}{b}=\frac{1}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=10\end{cases}}\)(thỏa) 

12 tháng 3 2020

em đéo biết

28 tháng 1 2020

Hình như sai đề rồi. ?????

4 tháng 4 2017