Tìm x (x+1)(x+2)(x+3)(x+4)-24=0
Cảm ơn các bạn nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(2x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)
Câu 1:
Ta có: \(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy: S={1;4}
Câu 2:
Ta có: \(3x^2-7x+3=0\)
\(\Delta=\left(-7\right)^2-4\cdot3\cdot3=49-36=13\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{13}}{6}\\x_2=\dfrac{7+\sqrt{13}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7-\sqrt{13}}{6};\dfrac{7+\sqrt{13}}{6}\right\}\)
Câu 3:
Ta có: \(5x^2-x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{4}{5}\right\}\)
Câu 4:
Ta có: \(7x^2+x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{7}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{8}{7}\right\}\)
Câu 1x^2-5x+4=0
<=>(x-1)(x-4)=0
<=>[x=1;x=4
Câu 2 3x^2-7x+3=0
x=7/6-căn bậc hai(13)/6, x=căn bậc hai(13)/6+7/6
x=7/6-căn bậc hai(13)/6, x=căn bậc hai(13)/6+7/6
Câu 3 5*x^2 -x-4 = 0
x=-4/5, x=1
Câu 4 7*x^2 +x-8 = 0
x=-8/7, x=1
bn ơi mk giải thế có chỗ nào ko hiểu bn có thể hỏi mk nhé
bạn câu đầu tiền là 0,2 hay 02 vậy ạ
bạn ơi câu đầu tiên là 0 nhé ! mình viết liền quá ! Xin lỗi bạn
\(\dfrac{-1}{4}< \dfrac{x}{24}< \dfrac{-1}{6}\\ \dfrac{-6}{24}< \dfrac{x}{24}< \dfrac{-4}{24}\\ \Rightarrow x=-5\)
a,
\(x^{15}=x\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\\x=0\end{cases}}\)
b, \(3+2^{\text{x}-1}=24-\text{[}4^2-\left(2^2-1\right)\text{]}\)
\(\Rightarrow3+2^{\text{x}-1}=24-\left(16-3\right)\)
\(\Rightarrow3+2^{\text{x}-1}=24-13\)
\(\Rightarrow2^{\text{x}-1}=11-3\)
\(\Rightarrow2^{\text{x}-1}=8\)
\(\Rightarrow2^{\text{x}-1}=2^3\)
\(\Rightarrow x-1=3\Rightarrow x=3+1=4\)
Vậy x = 4
a, Tham khảo : Tìm x biết x^15=x - Lê Nhật Minh
b, \(3+2^{x-1}=24-\left[4^2-(2^2-1)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[16-(4-1)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[16-3\right]\)
\(\Leftrightarrow3+2^{x-1}=24-13\)
\(\Leftrightarrow3+2^{x-1}=11\)
\(\Leftrightarrow2^{x-1}=8\)
\(\Leftrightarrow2^{x-1}=2^3\)
\(\Leftrightarrow x-1=3\Leftrightarrow x=4\)
Vậy x = 4
1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)
\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)
\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)
\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
Đặt \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)
\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)
Thay a , ta có :
\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{48}{49}.\dfrac{49}{50}=\dfrac{1}{50}\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt: \(t=x^2+5x+5\)
\(\Rightarrow\hept{\begin{cases}x^2+5x+4=t-1\\x^2+5x+6=t+1\end{cases}}\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(t-1\right)\left(t+1\right)-24=0\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
\(\Leftrightarrow x\left(x+5\right)\left(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}\right)=0\)
\(\Leftrightarrow x\left(x+5\right)\left[\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\right]=0\)
Mà: \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
x thuộc rỗng