phân tích thành nhân tử: a(a+2b)3-b(2a+b)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quên, mk sửa lại tí, mk ko chắc đâu, ms lớp 7
a(a+2b)3-b(2a+b)3
=a5+ab8-ab8+b5
=a5+b5
=(a+b)5
sai 100% rồi má ơi, chưa đc học lớp 8 mà đòi làm bài phân tích thành nhân tử, phân tích vế mũ 3 là đã thấy sai 100% rồi, mà má có phải lớp 7 ko z (a2)3 mà bằng a5
Gọi a+b =x có:
a(x+b)3−b(x+a)3
=a(x3+3x2b+3xb2+b3)−b(x3+3x2a+3xa2+a3)
=ax3+3ax2b+3axb2+ab3−bx3−3bx2a−3bxa2−ba3
=(a−b)x3+(3ax2b−3bx2a)+(3axb2−3bxa2)+ab3−ba3
=(a−b)x3+3axb(b−a)+ab(b2−a2)
=−x3(b−a)+3axb(b−a)+ab(b+a)(b−a)
=−x3(b−a)+3axb(b−a)+(a2b+ab2)(b−a)
=(b−a)(−x3+3axb+a2b+ab2)
nho lik e
a(a+2b)3 -b(2a+b)3
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left[\left(a^2\right)^2+ \left(b^2\right)^2\right]-2ab\left(a^2-b^2\right)\)
\(=\left(a^2+b^2\right)\left(a^2-b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)
\(=\left(a-b\right)^3\left(a+b\right)\)
Ta có
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng vào tổng ta có
\(\left(a+b-2c\right)^3+\left(b-c-2a\right)^3+\left(c+a-2b\right)^3\)
Đặt
\(M=\left(a+b-2c+b+c-2a+a+c-2b\right)^3\)
=> M=0
\(N=3\left(a+b-2c+b+c-2a\right)\left(b+c-2a+a+c-2b\right)\left(a+c-2b+a+b-2c\right)\)
\(\Rightarrow N=3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)
Để ý : M+N=B
=> \(B=0+3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)
=> \(B=3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)