Câu 4 (3,0 điểm). Cho tam giác DEF vuông tại D, có DE = 9cn , DF = 12 cm , đường cao DH. 1) Chứng minh ADEF n*Delta * H * E * D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
\(a,EF=\sqrt{DE^2+DF^2}=15\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{9}{15}=\dfrac{3}{5}\\ \cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{12}{15}=\dfrac{4}{5}\\ \tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{9}{12}=\dfrac{3}{4}\\ \cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{4}{3}\\ b,Áp.dụng.HTL:DH\cdot EF=DE\cdot DF\\ \Rightarrow DH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)
a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
b: Xét tứ giác DMHN có
góc DMH=góc DNH=góc MDN=90 độ
nên DMHN là hình chữ nhật
c: Xét tứ giác DHMK có
DK//MH
DK=MH
Do đó: DHMK là hình bình hành
Bạn ơi có mik hỏi là Chứng minh ΔDEF = Δ EHF đúng không bạn?
a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
b: DE=DI
HE=HI
=>DH là trung trực của EI
c: EH=HI
HI<HF
=>EH<HF
d: Xét ΔDFK có
KI,.FE là đường cao
KI cắt FE tại H
=>H là trực tâm
=>DH vuông góc KF
1 ) Do tam giác ABC cân tại A , AM là trung tuyến
=> AM là đường cao của BC
Lại có : BE là đường cao của AC
Mà BE cắt AM tại H
=> H là trực tâm của tam giác ABC .
=> CH vuông góc với AB
2 ) Vào mục câu hỏi hay :
Câu hỏi của Hỏa Long Natsu ( mình )
Chúc bạn học tốt !!!