Số nghiệm của phương trình \(\sqrt{4-6x-x^2}\)=x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4-6x-x^2}=x+4\left(đk:x\ge-4\right)\)
\(\Leftrightarrow4-6x-x^2=x^2+8x+16\)
\(\Leftrightarrow2x^2+14x+12=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=-6\left(ktm\right)\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $4-6x-x^2\geq 0$
PT \(\Rightarrow \left\{\begin{matrix} x+4\geq 0\\ 4-6x-x^2=(x+4)^2=x^2+8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ 2x^2+14x+12=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ 2(x+1)(x+6)=0\end{matrix}\right.\)
\(\Rightarrow x=-1\) (thỏa mãn đkxđ)
Vậy pt có 1 nghiệm duy nhất.
ĐK: \(x\ge1\)
Ta có: \(\sqrt{x^2+6x+9}=x-1\)
\(\Leftrightarrow x^2+6x+9=x^2-2x+1\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\left(loại\right)\)
⇒ ptvn
Điền vào dấu 3 chấm là số 0 nhé
\(\sqrt{x^2+6x+9}=x-1\)
<=> \(\sqrt{\left(x+3\right)^2}=x-1\)
<=> \(\left|x+3\right|=x-1\)
<=> \(\left[{}\begin{matrix}x+3=x-1\left(x\ge-3\right)\\x+3=-x+1\left(x< -3\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x-x=-1+3\\x+x=1-3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}0=2\left(VLí\right)\\2x=-2\end{matrix}\right.\)
<=> 2x = -2
<=> x = -1
Vậy nghiệm của phương trình là \(S=\left\{-1\right\}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Lời giải:
ĐKXĐ: $4-6x-x^2\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} x+4\geq 0\\ 4-6x-x^2=(x+4)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ x^2+7x+6=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ (x+1)(x+6)=0\end{matrix}\right.\Rightarrow x=-1\)
Thử lại với ĐKXĐ thì thỏa mãn
Nên pt có 1 nghiệm duy nhất.