Cho x-1/x = 2y-1/y. Chứng minh rằng x-y=x.y
Mn giúp mềnh với. Thanks mn nhiều lắm ạ❤❤❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(8x-1)(x+7)-(x-2)(8x+5)-11(6x+1)$
$=8x^2+55x-7-(8x^2-11x-10)-(66x-11)$
$=8x^2+55x-7-8x^2+11x+10-66x+11$
$=(8x^2-8x^2)+(55x+11x-66x)+(-7+10+11)=14$ không phụ thuộc vào giá trị của biến $x$ (đpcm)
Áp dụng liên tiếp bđt Cauchy-Schwarz và AM-GM
\(\dfrac{x}{1+y^2}+\dfrac{y}{1+x^2}=\dfrac{x^2}{x+y^2x}+\dfrac{y^2}{y+x^2y}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y+y^2x+x^2y}=\dfrac{4}{x+y+xy\left(x+y\right)}\)
\(=\dfrac{4}{2+2xy}\ge\dfrac{4}{2+\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{4}=1\)
\("="\Leftrightarrow x=y=1\)
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
b: \(\sqrt{8^2+6^2}-\sqrt{16}+\dfrac{1}{2}\sqrt{\dfrac{4}{25}}\)
\(=10-4+\dfrac{1}{2}\cdot\dfrac{2}{5}=6+\dfrac{1}{5}=\dfrac{31}{5}\)
\(\Rightarrow\dfrac{1}{3}\left(x-\dfrac{3}{2}\right)+\dfrac{1}{2}\left(2x+1\right)=\dfrac{-13}{3}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}+x+\dfrac{1}{2}=\dfrac{-13}{3}\)
\(\Rightarrow\dfrac{4}{3}x=\dfrac{-13}{3}\Rightarrow x=\dfrac{-13}{4}\)
(8,9 x 14,7 + 2,5 x 14,7) x (34 x 11 - 3400 x 0,1 - 34)
= (8,9 x 14,7 + 2,5 x 14,7) x (34 x 11 - 3400 : 10 - 34)
= [14,7 x (8,9 + 2,5)] x (34 x 11 - 34 x 10 - 34 x 1)
= (14,7 x 11,4) x [34 x (11 - 10 - 1)]
= (14,7 x 11,4) x (34 x 0)
= 0
( 14,7 x(8,9 + 2,5) ) x (34 x (11-100x0,1-1 )
=(14,7x11,4)x(34.(11-10-1))
=(14,7x11,4)x(34.0)
=(14,7x11,4)x0
=0