Given a trapezoid ABCD with base AB=4cm , CD=6cm , and góc C + góc D = 90 độ . Let M, N be respectively the midpoints of the segments AB and CD . Evaluate MN.
Answer: MN= ? cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
Dịch: Cho ABCD là HCN có AB = 12cm, AD = 6 cm. M và N lần lượt là trung điểm của các cạnh BC và CD. Tính diện tích tam giác AMN với đơn vị cm2.
SABCD = \(AB\cdot AD=12\cdot6=72\left(cm^2\right)\)
SADN = \(\frac{AD\cdot DN}{2}=\frac{AD\cdot\frac{1}{2}CD}{2}=\frac{AD\cdot\frac{1}{2}AB}{2}=\frac{6\cdot\frac{1}{2}12}{2}=18\left(cm^2\right)\)
SABM = \(\frac{AB\cdot BM}{2}=\frac{AB\cdot\frac{1}{2}BC}{2}=\frac{AB\cdot\frac{1}{2}AD}{2}=\frac{12\cdot\frac{1}{2}6}{2}=18\left(cm^2\right)\)
SMNC = \(\frac{MC\cdot NC}{2}=\frac{\frac{1}{2}BC\cdot\frac{1}{2}CD}{2}=\frac{\frac{1}{2}AD\cdot\frac{1}{2}AB}{2}=\frac{\frac{1}{2}6\cdot\frac{1}{2}12}{2}=9\left(cm^2\right)\)
SABCD = SADN + SABM + SMNC + SAMN
\(\Leftrightarrow\)SAMN = SABCD - SADN - SABM - SMNC
\(\Rightarrow\) SAMN = 72 - 18 - 18 - 9
= 27 (cm2)
đựng đường cao 2 bên áp dụng 2 tam giác đồng dạng suy ra tỉ số diện tích
đáp án 22 cm2
-Giải bằng TA hay TV vậy bạn?
-Gọi E là trung điểm DC.
\(\Rightarrow AB=DE=\dfrac{1}{2}CD\).
-Tứ giác ABED có: \(AB=DE\), AB//DE.
\(\Rightarrow\)ABED là hình bình hành mà \(\widehat{ADE}=90^0\).
\(\Rightarrow\)ABED là hình chữ nhật mà \(AD=AB\).
\(\Rightarrow\)ABED là hình vuông \(\Rightarrow\widehat{DBE}=45^0,\widehat{BED}=90^0\).
-△BCD có BE vừa là trung tuyến vừa là đường cao.
\(\Rightarrow\)BCD cân tại E \(\Rightarrow\)BE là tia phân giác của \(\widehat{BCD}\).
\(\Rightarrow\widehat{BCD}=2\widehat{DBE}=2.45^0=90^0\)
Given a segment AB = 100cm. Let C be a point between A and B. Let M, N be respectively the midpoint of the segment BC, AC. Find the length of the segment MN.
Answer : MN = 50 cm
P/s : k mình nha bạn
minh cung chiu
chỗ tiếng việt chỗ tiếng anh là sao