K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
17 tháng 12 2023

loading... 

17 tháng 12 2023

loading... 

10 tháng 12 2023

Kéo dài AC về phía A lấy điểm H sao cho CF = FH;

Lúc này bài toán trở thành chứng minh BE = HF

Xét tam giác HBC có: MB = MC (gt); FH = FC 

Nên MF là đường trung bình của tam giác HBC ⇒ ME//BH

Mặt khác ta có ME//AD ⇒  \(\widehat{AEF}\) = \(\widehat{BAD}\) (hai góc đồng vị) (1)

                                    \(\widehat{BAD}\) = \(\widehat{DAF}\) (AD là phân giác của góc BAC) (2) 

                                      \(\widehat{DAF}\) = \(\widehat{AFE}\) (hai góc so le trong)  (3)

Kết hợp (1);(2);(3) ta có: \(\widehat{AEF}\) = \(\widehat{AFE}\) ⇒ \(\Delta\)AEF cân tại A ⇒ AE = AF (*)

Vì ME//HB nên: \(\widehat{AHB}\) = \(\widehat{AFE}\) (so le trong)

                         \(\widehat{ABH}\) = \(\widehat{AEF}\) (so le trong)

          ⇒   \(\widehat{AHB}\) = \(\widehat{ABH}\) ⇒ \(\Delta\) AHB cân tại A ⇒ AB = AH (**)

Cộng vế với vế của(*) và(*) ta có: AE + AB = AF + AH  

                                 ⇒ BE = FH

                                  ⇒ BE = CF (vì cùng bằng HF)

 

góc FBD=góc FBA+góc DBA

=1/2(góc ABE+góc ABC)

=1/2*180=90 độ

=>FB vuông góc BD

mà BD//AE

nên FB vuông góc AE

12 tháng 6 2017

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC

17 tháng 8 2018

Bài giải : 

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC