cho a, b, c, d, e, f >0. cmr: \(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+d}\)+\(\dfrac{c}{d+e}\)+\(\dfrac{d}{e+f}\)+\(\dfrac{e}{f+a}\)+\(\dfrac{f}{a+b}\)\(\ge\)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học.
Ta có: \(\dfrac{a^4}{b^4}=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\)
\(=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}\cdot\dfrac{e}{f}\)
\(=\dfrac{a}{f}\)
Áp dụng cauchy-schwarz:
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+e}+\dfrac{d}{e+a}+\dfrac{e}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ce}+\dfrac{d^2}{ed+ad}+\dfrac{e^2}{ae+be}\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+ad+ae+bc+bd+be+cd+ce+de}\)
Giờ chỉ cần chứng minh
\(ab+ac+ad+ae+bc+bd+be+cd+ce+de\le\dfrac{2}{5}\left(a+b+c+d+e\right)^2\)
\(\Leftrightarrow ab+ac+ad+ae+bc+bd+be+cd+ce+de\le2\left(a^2+b^2+c^2+d^2+e^2\right)\)
điều này hiển nhiên đúng theo AM-GM:
\(ab\le\dfrac{a^2+b^2}{2};ac\le\dfrac{a^2+c^2}{2};ad\le\dfrac{a^2+d^2}{2}...\)
Cứ vậy ta thu được đpcm .Dấu = xảy ra khi a=b=c=d=e
P/s: : ]
Áp dụng tính chất dãy tỉ số bằng nhau cho giả thiết, ta có:
\(\dfrac{a}{b}=\dfrac{13}{15}\Leftrightarrow\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c+d}{13+15}=\dfrac{M}{28}\left(1\right)\)
\(\dfrac{c}{d}=\dfrac{17}{25}\Leftrightarrow\dfrac{c}{17}=\dfrac{d}{25}=\dfrac{c+d}{17+25}=\dfrac{M}{42}\left(2\right)\)
\(\dfrac{e}{f}=\dfrac{15}{21}\Leftrightarrow\dfrac{e}{15}=\dfrac{f}{21}=\dfrac{e+f}{15+21}=\dfrac{M}{36}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra: \(M\in BC\left(28;42;36\right)\). Mặc khác M là số tự nhiên nhỏ nhất, suy ra: M=112(đpcm).