Hãy lấy một số A bất kì có 3 chữ số sao cho chữ số hàng trăm lớn hơn chữ số hàng đơn vị. Ta lấy số có thứ tự các chữ số ngược lại với A (ví dụ khi chọn số 753 thì số thứ hai sẽ là 357). Tiếp theo tính hiệu D giữa A với số vừa tìm được. Ta lại lấy số có thứ tự các chữ số ngược lại với D (ví dụ khi lấy \(753-357=396\) thì ta sẽ lấy số \(693\)). Cuối cùng, lấy S là tổng của D với số vừa tìm được. Chứng minh rằng với bất kì số A thỏa mãn yêu cầu đề bài và thực hiện đúng quy trình, ta luôn có S là một hằng số.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
15 tháng 9 2015
Gọi số đó là abcd.
ta có : b=a+1
c=a+2
d=a+3
Ta có: abcd=ax1000+bx100+cx10+d
=ax1000+(a+1)x100+(a+2)x10+(a+3)
=ax1000+100+ax100+ax10+20+a+3
=ax(1000+100+10+1)+100+20+3
=ax1111+100+20+3
= aaaa+123
Khi đổi chỗ lại ta có:
dcba=dx1000+cx100+bx10+a
=(a+3)x1000+(a+2)x100+(a+1)x10+a
=ax1000+3000+ax100+200+ax10+10+a
= ax(1000+100+10+1)+3000+200+10
= ax1111+3210
=aaaa+3210
Lấy aaaa+3210-aaaa+123=3210-123=3087.
- Vì số A có 3 chữ số nên số A có dạng: \(\overline{abc}\left(0\le b,c\le9;0< a\le9;\right)\)
- Vì chữ số hàng trăm lớn hơn chữ số hàng đơn vị: \(\Rightarrow a>c\).
Cho \(a-c=d\left(0< d\le9\right)\)
- Số có thứ tự các chữ số ngược lại với A: \(\overline{cba}\)
- Hiệu \(D=\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=100\left(a-c\right)-\left(a-c\right)=100d-d=\overline{d00}-d\)Do \(0< d\le9\) nên:
\(D=\overline{\left(d-1\right)9\left(10-d\right)}\).
- Số có thứ tự các chữ số ngược lại với D: \(\overline{\left(10-d\right)9\left(d-1\right)}\)
- Tổng \(S=\overline{\left(d-1\right)9\left(10-d\right)}+\overline{\left(10-d\right)9\left(d-1\right)}=100\left(d-1\right)+10.9+\left(10-d\right)+100\left(10-d\right)+10.9+\left(d-1\right)=\left(100d-100\right)+\left(1000-100d\right)+189=1089\)
\(\Rightarrow\)S là 1 hằng số.
Vậy với bất kì số A thỏa mãn yêu cầu đề bài và thực hiện đúng quy trình, ta luôn có S là một hằng số.