K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

2D=1+1/7+1/72+...+1/799

2D-D=(1+1/7+1/72+...+1/799)-(1/7+1/72+...1/7100)

D=1-1/7100

Giải:

D=1/7+1/72+1/73+...+1/7100

7D=1+1/7+1/72+...+1/799

7D-D=(1+1/7+1/72+...+1/799)-(1/7+1/72+1/73+...+1/7100)

6D=1-1/7100

D=1-1/7100/6

Chúc bạn học tốt!

a) Ta có: \(7\cdot\dfrac{3}{14}-\dfrac{1}{14}\)

\(=\dfrac{3}{2}-\dfrac{1}{14}\)

\(=\dfrac{21}{14}-\dfrac{1}{14}\)

\(=\dfrac{10}{7}\)

b) Ta có: \(\dfrac{3}{2}+\dfrac{7}{4}:\dfrac{5}{2}\)

\(=\dfrac{3}{2}+\dfrac{7}{4}\cdot\dfrac{2}{5}\)

\(=\dfrac{3}{2}+\dfrac{7}{10}\)

\(=\dfrac{15}{10}+\dfrac{7}{10}=\dfrac{22}{10}=\dfrac{11}{5}\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
\(7\times \frac{3}{14}-\frac{1}{14}=\frac{7\times 3}{14}-\frac{1}{14}=\frac{21}{14}-\frac{1}{14}=\frac{21-1}{14}=\frac{20}{14}=\frac{2\times 10}{2\times 7}=\frac{10}{7}\)

\(\frac{3}{2}+\frac{7}{4}:\frac{5}{2}=\frac{3}{2}+\frac{7}{4}\times \frac{2}{5}=\frac{3}{2}+\frac{7\times 2}{4\times 5}=\frac{3}{2}+\frac{7\times 2}{2\times 2\times 5}\)

\(=\frac{3}{2}+\frac{7}{2\times 5}=\frac{3\times 5}{2\times 5}+\frac{7}{2\times 5}=\frac{3\times 5+7}{2\times 5}=\frac{22}{2\times 5}=\frac{2\times 11}{2\times 5}=\frac{11}{5}\)

NV
17 tháng 4 2022

Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)

\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)

\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)

14 tháng 7 2023

Ta đặt

  \(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)

\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)

\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)

\(A=\dfrac{693}{100}\)

14 tháng 7 2023

= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)

= 7.(1 - 1/100)

= 7 . 99/100

= 693/100

12 tháng 7 2021

a)A=\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{5}+\dfrac{3}{5}\right)+\left(\dfrac{5}{7}-\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(\dfrac{-11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

A=0+0+0+...+0+\(\dfrac{13}{15}\)

A=\(\dfrac{13}{15}\)

b) Ta có: \(-\dfrac{1}{9\cdot10}-\dfrac{1}{8\cdot9}-\dfrac{1}{7\cdot8}-...-\dfrac{1}{2\cdot3}-\dfrac{1}{1\cdot2}\)

\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(=-\left(1-\dfrac{1}{10}\right)=\dfrac{-9}{10}\)

19 tháng 2 2023

`3/4 + 5/6 = 9/12 + 10/12 = 19/12`

`1/2 + 7/12 = 6/12 + 7/12 = 13/12`

`2/3 xx 3/4 = 2/4 = 1/2`

`7/4 : 2 = 7/4 xx 1/2 = 7/8`

19 tháng 2 2023

\(a,\dfrac{3}{4}+\dfrac{5}{6}=\dfrac{18}{24}+\dfrac{20}{24}=\dfrac{38}{24}=\dfrac{19}{12}\)

\(b,\dfrac{1}{2}+\dfrac{7}{12}=\dfrac{6}{12}+\dfrac{7}{12}=\dfrac{13}{12}\)

\(c,\dfrac{2}{3}x\dfrac{3}{4}=\dfrac{2}{4}\)

\(d,\dfrac{7}{4}:2=\dfrac{7}{4}x\dfrac{1}{2}=\dfrac{7}{8}\)

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

9 tháng 1 2021

thanks 

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

30 tháng 3 2023

\(\dfrac{3}{x}+\dfrac{x}{x+1}+\dfrac{x-3}{x}=\dfrac{13}{7}\left(x\ne0;x\ne-1\right)\)

\(< =>\dfrac{3\cdot7\left(x+1\right)}{7x\left(x+1\right)}+\dfrac{7x\cdot x}{7x\left(x+1\right)}+\dfrac{7\left(x-3\right)\left(x+1\right)}{7x\left(x+1\right)}=\dfrac{13x\left(x+1\right)}{7x\left(x+1\right)}\)

suy ra

\(21x+21+7x^2+7\left(x^2+x-3x-3\right)=13x^2+13x\)

\(< =>21x+21+7x^2+7x^2+7x-21x-21=13x^2+13x\)

\(< =>7x^2+7x^2-13x^2+21x+7x-21x-13x+21-21=0\)

\(< =>x^2-6x=0\\ < =>x\left(x-6\right)=0\\ < =>\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(loại\right)\\x=6\left(tm\right)\end{matrix}\right.\)