Cho a+b=5, a >0, b>0
Tìm min P = \(\frac{1}{a}+\frac{1}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Ta có : a>0 \(\Rightarrow a+1>1\)
\(\Rightarrow\frac{a^2}{a+1}< \frac{a^2}{1}=a^2\)
Ta có :b>0\(\Rightarrow b+1>1\)
\(\Rightarrow\frac{b^2}{b+1}< \frac{b^2}{1}=b^2\)
\(\Rightarrow A< a^2+b^2\)
vì a;b>0\(\Rightarrow A=\frac{a^2}{a+1}+\frac{b^2}{b+1}>=\frac{\left(a+b\right)^2}{a+1+b+1}=\frac{\left(a+b\right)^2}{a+b+2}\)(bđt cauchy schawarz dạng engel)
dấu = xảy ra khi \(\frac{a}{a+1}=\frac{b}{b+1}\)
\(\frac{\left(a+b\right)^2}{a+b+2}=\frac{\left(a+b\right)^2-4+4}{a+b+2}=\frac{\left(a+b-2\right)\left(a+b+2\right)+4}{a+b+2}=a+b-2+\frac{4}{a+b+2}\)
\(=a+b+2+\frac{4}{a+b+2}-4>=2\sqrt{\frac{\left(a+b+2\right)4}{a+b+2}}-4=2\cdot2-4=4-4=0\)(bđt cosi)
dáu = xảy ra khi \(a+b+2=\frac{4}{a+b+2}\Rightarrow\left(a+b+2\right)^2=4\Rightarrow a+b+2=2\Rightarrow a+b=0\)\(\Rightarrow A>=\frac{\left(a+b\right)^2}{a+b+2}>=0\Rightarrow\)min A là 0
vậy min A là 0 khi \(\frac{a}{a+1}=\frac{b}{b+1};a+b=0\)
cho a>0, b>0, c>0, a+b+c\(\le\)1
tìm min của p=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
Áp dụng BĐT AM - GM, ta có:
\(M=a+b+\frac{1}{a}+\frac{1}{b}\)
\(=1+\frac{a+b}{ab}\)
\(\ge1+\frac{1}{\frac{\left(a+b\right)^2}{4}}\)
\(=5\)
Dấu "=" xảy ra khi a = b = 0,5
a.
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
b.
\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
c.
Ta có:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y
Áp dụng ta có:
\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
2.
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Áp dụng nó ta chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng vào bài làm:
\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{5}\)
\(\Rightarrow P\ge\frac{4}{5}\).Dấu "=" khi a=b=2,5
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{5}\)
\(\Rightarrow P\ge\frac{4}{5}.\)
Dấu "=" xảy ra khi và chỉ khi a = b = 2,5