Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối tia MB lấy K sao cho MK= MB
CM: a,KC vuông góc AC
b,AK song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a) Xét tam giác ABM và tam giác CKM , có:
AM = MC ( M là trung điểm )
MB = MK ( gt)
Góc BMA = KMC ( 2 góc đối đỉnh)
=> tam giác ABM = CKM
=> góc A = góc C ( =90 độ) ( 2 góc tg ứng)
=> KC vuông góc AC
giải phần a đã =)))
a,Xét tam giác AMB và tam giác CMK có:
AM=MB(M là trung điểm của AC)
góc AMB=góc CMK
BM=KM(gt)
=> TAm giác AMB=tam giác CMK(c.g.c)
=> góc BAM=góc KCM (hai cạnh tương ứng)
Vậy KC vuông góc với AC
b,Theo câu a ta có tam giác AMB=tam giác CMK (c.g.c)
=>AB=CK (hai cạnh tương ứng) (1)
Mặt khác AB vuông góc với AC và CK vuông góc với AC (theo câu a) nên:
AB song song với CK (2)
Từ (1) và (2) => AKCB là hình bình hành (Tứ giác có hai cạnh song song và bằng nhau)
Vậy AK song song với BC
a, xét tam giác AMB và tam giác CMK có:
AM=MC ( M là trung điểm của AC )
BM=KM ( theo để ra )
góc AMB= góc CMK
=> tam giác AMB = tam giác CMK (c-g-c )
=> góc BAM= góc KCM ( 2 góc tương ứng )
Vậy KC vuông góc với AC
b, theo câu a ta có : tam giác AMB = tam giác CMK (c-g-c )
=> AB = CK ( 2 cạnh tương ứng ) (1)
mặt khác : AB vuông góc với AC và CK vuông góc với AC ( đã chứng minh ở câu a ) nên :
AB song song với CK (2)
từ (1) và (2) => AKCB là hình bình hành ( tứ giác có 2 cạnh song song và bằng nhau )
=> AK song song với BC
a)Xét tam giác BAM và tam giác KCM có :
M1 = M3 ( Đối đỉnh )
AM = MC ( gt )
BM = MK ( gt )
=> Tam giác BAM = tam giác KCM
=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )
b) Xét tam giác AMK và tam giác CMB có :
KM = MB ( gt )
AM = MC ( gt )
M2 = M4 ( Đối đỉnh )
=> Tam giác AMK = tam giác CMB
=> Góc MKA = góc MBC ( cặp góc tương ứng )
=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
phần a bạn sai đê
B. Xét tg BMC và tg KMA có :
^BMC = ^KMA ( đối đỉnh)
MB= MK ( gt)
AM= MC ( Do M là trung điểm của AC ; gt )
→ tg BMC = tg KMA ( c.g.c)
→^ MBC = ^MKA ( 2 góc tương ứng )
Mà đây là 2 góc So letrong
→ BC // AK
→ ĐPCM
a) Xét tam giác AMB và tam giác CMK ta có :
AM = MC(M là trung điểm của AC)
BM = KM (giả thiết)
Góc AMB = góc CMK
Suy ra tam giác AMB = tam giác CMK ( cạnh-góc-cạnh)
Suy ra góc BAM = góc KCM ( 2 góc tương ứng )
Vậy KC vuông góc với AC
b) Theo câu a ta có tam giác AMB = tam giác CKM (chứng minh trên, cạnh-góc-cạnh)
Suy ra AB = CK ( 2 góc tương ứng ) (1)
AB vuông góc với AC và CK vuông góc với AC ( chứng minh trên )
Suy ra AB song song với CK (2)
Từ (1) và (2) suy ra AKCB là hình bình hành ( tứ giác có 2 cạnh song song và bằng nhau )
Nên AK song song với BC
K MÌNH NHA THANKS GOODBYE@@@@@@@@@@@@@@@@@@@@@@@@@@
a) xét tam giác AMB và tam giác CMK có
AM = MC ( M lag trung điểm của AC )
BM = KM ( theo để ra )
góc AMB = góc CMK
=> tam giác AMB = tam giác CMK ( c-g-c)
=>góc BAM = góc KCM ( 2 góc tương ứng )
vậy KC vuông góc với AC
b) theo câu a ta có tam giác AMB = tam giác CMK (c-g-c)
=> AB = CK ( 2 góc tương ứng ) (1)
mặt khác AB vuông góc với AC và CK vuông góc với AC (đã chứng minh ở câu a ) nên
AB song song với CK (2)
từ (1) và(2) => AKCB là hình bình hành (tứ giác có 2 cạnh song song và bằng nhau )
=> AK song song với BC
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ