Cho tam giác ABC vuông tại A; AB = 15cm, AC = 20cm, đường cao AH
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, AH
c) Gọi E là điểm đối xứng vói B qua H.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
1:
góc BAH+góc KAC=90 độ
góc BAH+góc ABH=90 độ
=>góc KAC=góc ABH
Xét ΔHBA vuông tại H và ΔKAC vuông tại K có
BA=AC
góc ABH=góc CAK
=>ΔHBA=ΔKAC
a) Xét tam giác HBA và tam giác ABC :
góc B chung
góc BHA = góc BAC (= 90 độ)
=> Tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lí pytago vào tam giác vuông ABC, ta được :
AB^2 + AC^2 = BC^2
=> 15^2 + 20^2 = BC^2
=> BC^2 = 625
=> BC = 25 (cm)
Vì tam giác HBA đồng dạng với tam giác ABC
=> AH/AC = AB/BC
=> AH/20 = 15/25
=> AH = 20.15/25 = 12 (cm)
No one but you draw the figure.
a) Consider the right triangle ABC, which has \(\widehat{A}=90^o\), we have \(\widehat{B}+\widehat{C}=90^o\Leftrightarrow\widehat{C}=90^o-\widehat{B}\) (1)
On the other hand, the triangle ABC has the height AH, therefore, triangle HBA is also a right triangle \(\left(\widehat{AHB}=90^o\right)\)
Thus, we have \(\widehat{BAH}+\widehat{B}=90^o\Leftrightarrow\widehat{BAH}=90^o-\widehat{B}\) (2)
From (1) and (2), we get \(\widehat{HAB}=\widehat{C}\)
Consider the 2 triangles HAB and ABC, both of these triangles are right triangles, also, \(\widehat{HAB}=\widehat{C}\). Therefore, \(\Delta HAB~\Delta ABC\left(a.a\right)\)
b) Consider the right triangle ABC \(\left(\widehat{A}=90^o\right)\). According to the Pytagorean theorem, we have \(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
Because \(AB=15cm;AC=20cm\), \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Triangle ABC rights at A, so \(S_{ABC}=\dfrac{1}{2}AB.AC\) (3)
Also, triangle ABC has the height AH, so \(S_{ABC}=\dfrac{1}{2}AH.BC\)(4)
From (3) and (4), we have \(\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\left(=S_{ABC}\right)\Leftrightarrow AH.BC=AB.AC\)\(\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)
So, \(BC=25cm\) and \(AH=12cm\)
c) What is the question? I can't see it.