K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

A B C D E F I M N

Do AE = CF nên AEFD và CFEB là hai hình thang vuông bằng nhau. Vậy thì \(S_{CFAB}=\frac{S_{ABCD}}{2}\Rightarrow S_{EMB}+S_{MNCB}+S_{NFC}=\frac{S_{ABCD}}{2}\)

Lại có \(S_{IBC}=\frac{S_{ABCD}}{2}\Rightarrow S_{IMN}+S_{NMCB}=\frac{S_{ABCD}}{2}\)

Vậy thì \(S_{IMN}=S_{MEB}+S_{NFC}\)

24 tháng 11 2016

em cảm ơn ạ 

21 tháng 11 2016

em ko bit

8 tháng 11 2021

Xét ΔABF và ΔDAE ta có:

AB=DA (gt)

ˆBAF=ˆADE=900

AF=DE (gt)

Do đó: ΔABF=ΔDAE(c.g.c)

⇒BF=AE và ˆB1=ˆA1

Gọi H là giao điểm của AE và BF

ˆBAF=ˆA1+ˆA2=900

⇒ ˆB1+ˆA2=900

Trong ΔABH ta có:

ˆAHB+ˆB1+ˆA2=1800

ˆAHB=1800−(ˆB1+ˆA2)=1800−900=900

Vậy AE⊥BF

8 tháng 11 2021

tham khảo nha em