Tìm nghiệm của đa thức 4x^4+x^3+2x^2+x+2
Giúp mik với ,plsssssss!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3
=x^3-5x+3
bậc:3
hệ số tự do:3
hệ số cao nhất :3
B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3
=-8x^2-5x+3
bậc:2
hệ số tự do:3
hệ số cao nhất:3
b)A(x)+B(x)=x^3-8^2+10x+6
câu b mik ko đặt tính theo hàng dọc đc thông cảm nha
a: A(x)=0
=>4x-25=0
hay x=25/4
b: B(x)=0
=>2x+1/2=0
=>x=-1/4
c: C(x)=0
=>-3/4x+5/2=0
=>-3/4x=-5/2
hay x=10/3
`A(x) = 4x - 25`.
`<=> A(x) = 4(x - 25/4) = 0`
`=> x - 25/4 = 0`.
`=> x = 25/4`.
`B(x) = 2x + 1/2`.
`<=> 2(x+1/4) = 0`
`=> x + 1/4 = 0`
`=> x = -1/4`.
`C(x) = -3/4 + 2/5`.
`=> -7/20`
`=>` Đa thức vô nghiệm.
`D(x) = -0,7x - 4/13`.
`<=> -0,7(x+28/130)`
`=> x + 28/130 = 0`
`=> x = -28/130`.
`=> x = -14/65`.
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2
Ta có: x2>=0(với mọi x)
=>x2+1>=1(với mọi x)
=>(x2+1)2>0(với mọi x)
hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm
Vậy f(x) không có nghiệm
a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)
b, \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)
Thay \(x=-1\) vào \(B\left(x\right)\)
\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)
\(\Rightarrow x=-1\) không là nghiệm của B(x)
CM đa thức k có nghiệm:
a) x^2 + +5x + 8
Vì x^2 + +5x >hc = 0 với mọi x
=> x^2 + +5x + 8 > 0 với mọi x
Vậy đa thức x^2 + +5x + 8 k có nghiệm
các câu sau bn lm tương tự vậy nha
Thu gọn: M(x) = 4x^3 + 2x^4 - x^2 - x^3 + 2x^2 - x^4 +1 - 3x^3 = x^4 + x^2 +1
Do x^4 lớn hơn hoặc = 0 và x^2 lớn hơn hoặc = 0 vs mọi x => x^4 + x^2 +1 vô nghiệm
\(M\left(x\right)=4^3+2x^4-x^2-x^3+2x^2-x^4+1-3x^3\)
\(M\left(x\right)=x^4+x^2+1\)
Vì : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^4+x^2\ge0\forall x\Rightarrow x^4+x^2+1>0\forall x\)
=> M(x) vô nghiệm