giải phương trình: \(\frac{2x\sqrt{x}}{\sqrt{x}+\sqrt{1-x}}+\sqrt{x\left(1-x\right)}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
![](https://rs.olm.vn/images/avt/0.png?1311)
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
ĐK: \(\hept{\begin{cases}x\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\le1\end{cases}\Rightarrow0\le x\le1.}\)
\(pt\Leftrightarrow2x\sqrt{x}+\sqrt{x\left(1-x\right)}\left(\sqrt{x}+\sqrt{1-x}\right)=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\left(1-x\right)\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\sqrt{x}-x\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow x\sqrt{x}+x\sqrt{1-x}-\sqrt{1-x}=0\)
\(\Leftrightarrow x\sqrt{x}+\left(x-1\right)\sqrt{1-x}=0\)
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\Rightarrow\hept{\begin{cases}a^2+b^2=1\\a^3-b^3=0\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=0\Rightarrow\left(a-b\right)\left(1+ab\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-b=0\\ab=-1\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{1-x}\\\sqrt{x\left(1-x\right)}=-1\end{cases}\Rightarrow}}\) \(x=\frac{1}{2}\left(tm\right)\)
Vậy \(x=\frac{1}{2}.\)
x=1/2 do nha