K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

ĐK: \(\hept{\begin{cases}x\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\le1\end{cases}\Rightarrow0\le x\le1.}\)

\(pt\Leftrightarrow2x\sqrt{x}+\sqrt{x\left(1-x\right)}\left(\sqrt{x}+\sqrt{1-x}\right)=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\left(1-x\right)\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\sqrt{x}-x\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow x\sqrt{x}+x\sqrt{1-x}-\sqrt{1-x}=0\)

\(\Leftrightarrow x\sqrt{x}+\left(x-1\right)\sqrt{1-x}=0\)

Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\Rightarrow\hept{\begin{cases}a^2+b^2=1\\a^3-b^3=0\end{cases}}\)

\(\Rightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=0\Rightarrow\left(a-b\right)\left(1+ab\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-b=0\\ab=-1\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{1-x}\\\sqrt{x\left(1-x\right)}=-1\end{cases}\Rightarrow}}\) \(x=\frac{1}{2}\left(tm\right)\)

Vậy \(x=\frac{1}{2}.\)

24 tháng 11 2016

x=1/2 do nha

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)