_Đa thức P(x) hệ số cao nhất bằng 1, biết P(x) chia hết cho x-1; P(x) chia x-2 dư 4, chia x-3 dư 18, chia x-4 dư 48. Hãy tìm đa thức P(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(P\left(x\right)⋮\left(2x-1\right)\) \(\Rightarrow P\left(\dfrac{1}{2}\right)=0\)
Xét đa thức \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\). Ta có \(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=0\) nên \(Q\left(x\right)\) có 4 nghiệm là \(1,2,3,4\). Nếu \(Q\left(x\right)\equiv0\) thì \(P\left(x\right)=x+1\), vô lý. Do đó \(Q\left(x\right)\) là đa thức khác hằng \(\Rightarrow\) bậc của \(Q\left(x\right)\) phải lớn hơn hoặc bằng 4. Mà \(P\left(x\right)\) có hệ số cao nhất là 1 \(\Rightarrow\) \(Q\left(x\right)\) cũng phải có hệ số cao nhất là 1.
Mặt khác, \(Q\left(\dfrac{1}{2}\right)=P\left(\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+1\right)=-\dfrac{3}{2}\)
Đặt \(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)R\left(x\right)\). Khi đó \(R\left(x\right)\) có hệ số cao nhất là 1 và \(R\left(\dfrac{1}{2}\right)=-\dfrac{8}{35}\).
Khi đó, ycbt \(\Leftrightarrow\) tìm tất cả các đa thức \(R\left(x\right)\) có hệ số cao nhất là 1 mà \(R\left(\dfrac{1}{2}\right)=-\dfrac{8}{35}\).
Nếu \(R\left(x\right)=-\dfrac{8}{35}\) thì vô lý.
Nếu \(R\left(x\right)\) có bậc là 1 thì \(R\left(x\right)=x+a\). Thế \(x=\dfrac{1}{2}\) sẽ tìm được \(a=-\dfrac{51}{70}\) và do đó \(R\left(x\right)=x-\dfrac{51}{70}\) \(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-\dfrac{51}{70}\right)\). Thế vào \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\) ta tìm được đa thức \(P\left(x\right)\) thỏa ycbt.
Nếu \(R\left(x\right)\) có bậc 2 thì \(R\left(x\right)=x^2+ax+b\). Thế \(x=\dfrac{1}{2}\) thì ta có \(\dfrac{1}{2}a+b=-\dfrac{1}{2}\), sẽ có vô số cặp số \(\left(a,b\right)\) thỏa mãn điều này \(\Rightarrow\) tồn tại vô số đa thức \(Q\left(x\right)\) \(\Rightarrow\) tồn tại vô số đa thức \(P\left(x\right)\) thỏa ycbt.
Tương tự như thế, ta xét bậc của \(R\left(x\right)\) tăng dần thì sẽ có vô số đa thức \(P\left(x\right)\) thỏa mãn ycbt. (nhưng sẽ không có công thức chung cho các đa thức)
Vì �(�)⋮(2�−1)P(x)⋮(2x−1) ⇒�(12)=0⇒P(21)=0
Xét đa thức �(�)=�(�)−(�+1)Q(x)=P(x)−(x+1). Ta có �(1)=�(2)=�(3)=�(4)=0Q(1)=Q(2)=Q(3)=Q(4)=0 nên �(�)Q(x) có 4 nghiệm là 1,2,3,41,2,3,4. Nếu �(�)≡0Q(x)≡0 thì �(�)=�+1P(x)=x+1, vô lý. Do đó �(�)Q(x) là đa thức khác hằng ⇒⇒ bậc của �(�)Q(x) phải lớn hơn hoặc bằng 4. Mà �(�)P(x) có hệ số cao nhất là 1 ⇒⇒ �(�)Q(x) cũng phải có hệ số cao nhất là 1.
Mặt khác, �(12)=�(12)−(12+1)=−32Q(21)=P(21)−(21+1)=−23
Đặt �(�)=(�−1)(�−2)(�−3)(�−4)�(�)Q(x)=(x−1)(x−2)(x−3)(x−4)R(x). Khi đó �(�)R(x) có hệ số cao nhất là 1 và �(12)=−835R(21)=−358.
Khi đó, ycbt ⇔⇔ tìm tất cả các đa thức �(�)R(x) có hệ số cao nhất là 1 mà �(12)=−835R(21)=−358.
Nếu �(�)=−835R(x)=−358 thì vô lý.
Nếu �(�)R(x) có bậc là 1 thì �(�)=�+�R(x)=x+a. Thế �=12x=21 sẽ tìm được �=−5170a=−7051 và do đó �(�)=�−5170R(x)=x−7051 ⇒�(�)=(�−1)(�−2)(�−3)(�−4)(�−5170)⇒Q(x)=(x−1)(x−2)(x−3)(x−4)(x−7051). Thế vào �(�)=�(�)−(�+1)Q(x)=P(x)−(x+1) ta tìm được đa thức �(�)P(x) thỏa ycbt.
Nếu �(�)R(x) có bậc 2 thì �(�)=�2+��+�R(x)=x2+ax+b. Thế �=12x=21 thì ta có 12�+�=−1221a+b=−21, sẽ có vô số cặp số (�,�)(a,b) thỏa mãn điều này ⇒⇒ tồn tại vô số đa thức �(�)Q(x) ⇒⇒ tồn tại vô số đa thức �(�)P(x) thỏa ycbt.
Tương tự như thế, ta xét bậc của �(�)R(x) tăng dần thì sẽ có vô số đa thức �(�)P(x) thỏa mãn ycbt. (nhưng sẽ không có công thức chung cho các đa thức)
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
2.
Ta thấy $x^2+2x+1=(x+1)^2$
Để $x^4+ax^2+1$ chia hết cho $x^2+2x+1$ thì trước tiên nó phải chia hết cho $x+1$, tức là số dư khi thực hiện phép chia là $0$
Áp dụng định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=x^4+ax^2+1$ cho $x+1$ là:
\(f(-1)=(-1)^4+a(-1)^2+1=1+a+1=0\Leftrightarrow a=-2\)
Thử lại:
\(x^4+ax^2+1=x^4-2x^2+1=(x^2-1)^2=(x-1)^2(x+1)^2\vdots (x+1)^2\) (thỏa mãn)
Vậy $a=-2$
3)
Theo định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=3x^2+ax+27$ cho $x+5$ là
\(f(-5)=3(-5)^2+a(-5)+27=102-5a\)
Để số dư bằng $2$ thì \(102-5a=2\Rightarrow a=20\)
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
\(f\left(x\right)=x^3+2ax+b\)
Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)
Vì \(f\left(x\right)\)chia \(x+2\)dư \(3\) \(\Rightarrow f\left(-2\right)=3\)
\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)
Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)
\(\Rightarrow b=3\)
Vậy \(a=-2;b=3\)
Hệ số cao nhất bằng 1 là sao bạn
_ là thế này: x4 có hệ số là 1; 3x12 có hệ số là 3