tìm x biết
7^x - 25^x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x+2/=0\(\Rightarrow x+2=0\Rightarrow x=0-2=-2\)
/x-3/=7-(-2)=9\(\Rightarrow x=9+3=12ho\text{ặc}x=-9+3=-6\)
(7-x)-(25+7)=-25\(\Rightarrow\left(7-x\right)-32=-25\Rightarrow7-x=-25+32=7\Rightarrow x=0\)
/x-3/=/5/+/-7/=5+7=12\(\Rightarrow x=15ho\text{ặc}x=-9\)
/x-5/=/-7/=7\(\Rightarrow x=12ho\text{ặc}x=-2\)
4-(7-x)=x-(13-4)\(\Rightarrow x-3=x-9\Rightarrow x-x=-9+3\Rightarrow0=-6\)(vô lí)
Vậy không có x thoả mãn 4-(7-x)=x-(13-4)
|x+2|=0
Vì |0|=0,suy ra x+2=0
x=0-2
x=-2
Vậy x = -2
|x-3|=7-(-2)
|x-3|=7+2
|x-3|=9
Vì |9|=|-9|=9,suy ra x-3 thuộc{9;-9}
*x-3=9
x =9+3
x =12
*x-3=-9
x=-9+3
x=-6
Vậy x thuộc {12;-6}
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a.-2 .(7 + x) < 0
ta có:- . + = - (khác 0)
- < 0
=>7 + x = -1;-2;-3;-4;...
x = -6;-5;-4;...
b.(x - 1) . (x + 2) < 0
ta có: - . + = - hoặc + . - = -
=>(x - 1) . ( x + 2) = -
=>x = -1
c.(x^2 - 9).(2x + 10) = 0
=> (x^2 - 9) = 0 hoặc (2x + 10) = 0
x^2 - 9 =0
x^2 =0 + 9
x^2 = 9
x = 3 hoặc -3
2x + 10=0
2x = 0 - 10
2x = -10
x = -10 : 2
x = -5
vậy: x thuộc {3;-3;5}
d.(x - 2)^2 - 25=0
(x - 2 )^2 = 0 + 25
(x - 2)^2 = 25
x - 2 =5
x = 5 + 2
x =7
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
7x - 25x = 0
⇔ 7x = 25x
⇔ x = 0
\(7^x-25^x=0\)
\(\Leftrightarrow7^x=25^x\)
\(\Leftrightarrow\left(\dfrac{7}{25}\right)^x=1\)
\(\Leftrightarrow x=0\)