K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

A B C D E F M P Q I K

a/ 

Vì ABCD là hình bình hành nên AB // CD => ABCD cũng là hình thang.

Ta có E và F lần lượt là trung điểm các cạnh AD và BC nên EF là đường trung bình 

của hình thang ABCD => EF // AB (1)

Lại có AE // BF (2) . Từ (1) và (2) suy ra ABFE là hình bình hành (dhnb)

b/ Xét tứ giác DEBC có \(\hept{\begin{cases}DE=BF\\DE\text{//}BF\end{cases}}\) => DEBF là hình bình hành => BE // DF

Xét tam giác BCP : \(\hept{\begin{cases}BF=FC\\FQ\text{//}BP\end{cases}}\) => QF là đường trung bình => CQ = QP (3)

Tương tự với tam giác ADQ : PE là đường trung bình => AP = PQ (4)

Từ (3) và (4) => AP = PQ = QC

c/ 

Ta có : \(\hept{\begin{cases}IE=EM\\AE=ED\end{cases}}\) => IAMD là hình bình hành => IA // DM hay IA // CD (5)

Tương tự : \(\hept{\begin{cases}BF=FC\\MF=FK\end{cases}}\) => BKCM là hình bình hành => BK // CD (6)

Lại có AB // CD (7)

Từ (5) , (6) , (7) kết hợp cùng với tiên đề Ơ-clit ta được đpcm.

d/  Vì IAMD và BKCM là các hình bình hành (chứng minh ở câu c) 

nên ta có AI = DM , BK = CM

=> AI + BK = DM + CM = CD (không đổi)

Vậy khi M di chuyển trên cạnh CD thì AI + BK không đổi.

20 tháng 11 2016

khó đấy bạn !

14 tháng 5 2022

refer

undefined

27 tháng 10 2021

Bị che một nửa góc rồi bạn ơi

a: Xét tứ giác BEDF có 

DE//BF

DE=BF

Do đó: BEDF là hình bình hành

b: Xét ΔAQD có 

E là trung điểm của AD

EP//QD

Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)

Xét ΔCPB có 

F là trung điểm của BC

FQ//BP

Do đó: Q là trung điểm của CP

Suy ra: QC=PQ(2)

Từ (1) và (2) suy ra AP=PQ=QC

 

29 tháng 12 2021

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

9 tháng 11 2017

A B C D P Q E F
a) Có \(DE=\frac{1}{2}DA\)\(BF=\frac{1}{2}BC\).
Tứ giác ABCD là hình bình hành nên DE = BC suy ra DE = BF.
Mà DE // BF.
Vì vậy tứ giác BEDF là hình bình hành.
b) Theo chứng minh câu a tứ giác BEDF là hình bình hành suy ra BE // DF.
Xét tam giác ADQ có E là trung điểm của DA và AB // DQ nên P là trung điểm của AQ.
Vì vậy AP = PQ. (1)
Xét tam giác BCP có F là trung điểm của BC và FD // BE nên Q là trung điểm của của PC.
Vì vậy PQ = QC. (2)
Từ (1) và (2) suy ra: AP = PQ = QC.
c)Do AE // BC nên áp dụng định lý Ta-lét:
\(\frac{AP}{PB}=\frac{EP}{PB}=\frac{1}{2}\).
Suy ra \(EP=\frac{1}{2}PB\).
Mặt khác R là trung điểm của PB nên PR = RB \(=\frac{1}{2}PB\).
Từ đó suy ra \(EP=PR=RB\).
Vậy P là trung điểm của AR và ta cũng có P là trung điểm AQ nên tứ giác ARQE là hình bình hành.


 

25 tháng 8 2018

Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.

MONG CÁC BẠN