K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Mình không biết nha

Chúc các bạn học giỏi

Chào các bạn

2 tháng 4 2017

Sorry nha mik mới học lớp 6 nên không giúp được bạn.

Chúc các bạn học thật giỏi !!!
Cảm ơn nhìu nhìu lắm...>.<

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

NV
9 tháng 9 2020

\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2.yz}}=\frac{1}{2\sqrt{xy.xz}}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)

Tương tự: \(\frac{1}{y^2+zx}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}\right)\) ; \(\frac{1}{z^2+xy}\le\frac{1}{4}\left(\frac{1}{xz}+\frac{1}{yz}\right)\)

Cộng vế với vế ta sẽ có đpcm

16 tháng 2 2017

Ta thấy rằng trong bài này nên áp dụng HĐT

Nếu a+b+c = 0 thì a3 + b3 + c3 = 3abc

Theo bài ra , ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Ta có :

\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(\Leftrightarrow A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)(Vì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\))

Vậy A = 3

Chúc bạn hok tốt =))ok

16 tháng 2 2017

3

13 tháng 4 2020

Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)

\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)

\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)

\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)

\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)

\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)

do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)

dấu = xảy ra khi x=y=z=1/3

zậy...........