Một hình chữ nhật có chiều dài hơn chiều rộng 4m và bình phương độ dài đường chéo gấp 5 lần tổng của chiều dài và chiều rộng. Tính chiều dài hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài mảnh đất là x (m)(x > 6)
Chiều rộng mảnh đất là x – 6 (m)
Chu vi mảnh đất là 2(x + x – 6) = 4x – 12 (m)
Theo định lí Py-ta-go ta có bình phương đường chéo của mảnh đất là x 2 + ( x – 6 ) 2
Vì bình phương đường chéo gấp 5 lần chu vi nên ta có phương trình:
x 2 + ( x – 6 ) 2 = 5 ( 4 x – 12 ) ⇔ x 2 + x 2 – 12 x + 36 = 20 x – 60
⇔ 2 x 2 – 32 x + 96 = 0 ⇔ x 2 – 16 x + 48 = 0
⇔ (x – 12)(x – 4) = 0 ⇔ x = 12 (tmđk) hoặc x = 4 (không tmđk x > 6)
Vậy chiều dài của mảnh đất là 12m, chiều rộng của mảnh đất là 6m
Lời giải:
Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m
Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago
Theo bài ra ta có:
$a^2+(a+6)^2=10(a+a+6)$
$\Leftrightarrow 2a^2+12a+36=20a+60$
$\Leftrightarrow a^2-4a-12=0$
$\Leftrightarrow (a-6)(a+2)=0$
Vì $a>0$ nên $a=6$
Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)
Gọi chiều dài, chiều rộng mảnh đất lần lượt là: `x;y (m)`
`ĐK: y > x; x,y > 0;y > 6`
Theo bài ra ta có hệ ptr:
`{(y-x=6),(x^2+y^2=5.2.(x+y)):}`
`<=>{(x-y=-6<=>x=y-6),(x^2+y^2-10x-10y=0):}`
`<=>(y-6)^2+y^2-10(y-6)-10y=0`
`<=>y^2-12y+36+y^2-10y+60-10y=0`
`<=>2y^2-32y+96=0`
`<=>[(y=12(t//m)),(y=4(ko t//m)):}`
`=>x=12-6=6`
Vậy `CD=12 m ; CR=6 m`
bạn ơi, đã gọi chiều dài là x và chiều rộng là y thì sao suy y - x = 6 được??
Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (a > 6, b > 0)
Diện tích mảnh vườn là: a.b (m2)
Chiều dài hơn chiều rộng 6m nên ta có: a – b = 6
Áp dụng định lý Pitagore, ta có bình phương độ dài đường chéo hình chữ nhật là a2 + b2
Theo đề ra ta có: a2 + b2 = 2,5ab
mà a – b = 6 Û a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :
(b + 6)2 + b2 = 2,5b.(b + 6)
⇔ 2b2 +12b + 36 = 2,5b2 +15b
⇔ 0,5b2 + 3b - 36 = 0 Û b2 + 6b - 72 = 0
Giải ra ta được b = 6 ; a = b + 6 = 12
Diện tích mảnh vườn là S = a.b = 12.6 = 72 (m2)
Vậy mảnh vườn hình chữ nhật có diện tích 72m2.
Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật
(a > 6, b > 0)
Diện tích mảnh vườn là: a.b (m2)
Chiều dài hơn chiều rộng 6m nên ta cỏ: a - b = 6
Áp dụng định lý Pitagore, ta cỏ bình phương độ dài đường chéo hình chữ nhật là
a2 + b2. Theo đề ra ta cỏ: a2 + b2 = 2,5ab
mà a - b = 6 ⇔ a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :
(b + 6)2 + b2 = 2,5b.(b + 6)
⇔ 2b2 +12b+ 36 = 2,5b2 +15b ⇔ 0,5b2 +3b-36 = 0 ⇔ b2 + 6b - 72 = 0
Giải ra ta được b = 6 ; a = b + 6 = 12
Diện tích mảnh vườn là s = a.b = 12.6 = 72 (m2)
Vậy mảnh vườn hình chữ nhật cỏ diện tích 72m2
Bài 1 :
Giải
Tổng số phần bằng nhau là :
3 + 1 = 4 ( phần )
Đường chéo ngắn là :
104 : 4 x 1 = 26 ( cm )
Đường chéo dài là :
104 - 26 = 78 ( cm )
Vậy diện tích hình thoi là : 26 x 78 : 2 =1014(cm2)26×782=1014(cm2)
Đ/S : 1014 cm2
Ta có: Bình phương độ dài đường chéo của một hình chữ nhật là: \({5^2} + {8^2} = 25 + 64 = 89\)
Độ dài đường chéo của một hình chữ nhật là: \(\sqrt {89} = 9,43398...\)(dm)
Làm tròn kết quả này đến hàng phần mười, ta được: 9,4 dm
Chú ý: Độ dài đường chéo của một hình chữ nhật bằng căn bậc hai số học của tổng các bình phương độ dài hai cạnh của nó