Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì trong 4 giờ sẽ đầy bể. Nếu mở riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 6 giờ. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là sao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 0)
Trong một giờ:
- Vòi thứ nhất chảy được 1/x (bể)
- Vòi thứ hai chảy được 1/(x+4) (bể)
- Vòi thứ ba chảy được 1/6 (bể)
Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước ở bể chảy ra nên ta có phương trình:
Vậy chỉ dùng vòi thứ nhất thì sau 8 giờ bể đầy nước
Đáp án: D
Đổi 2 giờ 55 phút = giờ
Gọi x (giờ) là thời gian chảy riêng đầy bể của vòi thứ nhất.
Điều kiện: x > 35/12
Khi đó thời gian chảy riêng đầy bể của vòi thứ hai là x + 2 (giờ)
trong 1 giờ, vòi thứ nhất chảy được 1/x (bể)
trong 1 giờ, vòi thứ hai chảy được 1/(x + 2 ) (bể)
Giá trị x = - 7/6 không thỏa mãn điều kiện bài toán.
Vậy vòi thứ nhất chảy riêng đầy bể trong 5 giờ
vòi thứ hai chảy riêng đầy bể trong 5 + 2 = 7 giờ
Các cậu giúp tớ với ạ,nmai tớ ph thi r nên tớ rất cần sự giúp đỡ từ mng ai.cảm ơn<3
Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 2)
Trong một giờ:
- Vòi thứ nhất chảy được 1/x (bể)
- Vòi thứ hai chảy được 1/(x-2) (bể)
- Vì vòi thứ ba chảy ra trong 7,5 giờ thì cạn bể nên trong 1 giờ vòi thứ ba chảy được 2/15 (bể)
Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước chảy ở bể ra nên ta có phương trình:
Vậy chỉ dùng vòi thứ nhất thì sau 10 giờ bể đầy nước
Đáp án: C
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được bể; vòi thứ hai chảy được bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
QUẢNG CÁO
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Kiến thức áp dụng
Giải bài toán bằng cách lập hệ phương trình :
Bước 1 : Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.
gọi 1/x là số nước chảy vào trong 1 h của vòi một
=> ... vòi hai là 1/X+6
ta có:
1/x+1/x+6 = 1/4
=> x bằng 6
. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h
vòi hai là 10h