Cho tam giác ABC có góc A = 80 độ. Vẽ cung tròn tâm B bán kính = AC, vẽ cung tròn tâm C bán kính = BA. Hai cung tròn này cắt nhau tại M nằm khác của A đối với BC.
a, Tính góc BMC.
b, Chứng minh: CM // AB và BM //AC
(Các bạn làm nhanh hộ mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
ΔΔABC và ΔΔDCB có AB=CD (gt)
BC chung AC=DB (gt)
Vậy ΔΔABC = ΔΔDCB (c.c.c)
Suy ra ˆBDC=ˆA=800BDC^=A^=800 (hai góc tương ứng)
b) Do ΔΔABC = ΔΔDCB (câu a) do đó ˆABC=ˆBCDABC^=BCD^ (hai góc tương ứng của hai tam giác bằng nhau)
Hai góc này ở vị trí so le trong của hai đường thẳng AB và CD cắt đường thẳng BC do đó CD // AB.
a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé
Xét ΔABC và ΔCDA, ta có:
AB = CD (theo cách vẽ)
AC cạnh chung
BC = AD (theo cách vẽ)
Suy ra: ΔABC = ΔCDA (c.c.c) ⇒ ∠(ACB) =∠(CAD) (hai góc tương ứng)
Vậy AD // BC ( vì có cặp góc so le trong bằng nhau)
a) D \(\in\) (B; AC) => BD = AC
D \(\in\) (C; AB) => CD = AB
Xét tam giác ABC và DCB có: BC chung; AB = DC; AC = DB
=> tam giác ABC = DCB (c - c- c)
=> góc BAC = CDB (2 góc tương ứng) => góc CDB = 80o
và góc ABC = DCB . Mà 2 góc này ở vị trí so le trong nên AB // CD
mo beeg.com ma coi