Tìm giá trị nhỏ nhất của A=(n-1).n.(n+1).(n+2)-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đánh đề cẩn thận chứ
\(A=\left(2n+3\right)^2-\left(n-1\right)\left(n-5\right)+2\)
\(A=4n^2+12n+9-n^2+6n-5+2\)
\(A=3n^2+18n+6\)
\(A=3\left(n^2+6n+2\right)\)
\(A=3\left(n^2+2\cdot n\cdot3+3^2-7\right)\)
\(A=3\left[\left(n+3\right)^2-7\right]\)
\(A=3\left(n+3\right)^2-21\ge21\forall n\)
Dấu "=" xảy ra \(\Leftrightarrow n+3=0\Leftrightarrow n=-3\)
Ta có \(A=m^3+n^3+mn\)
\(A=\left(m+n\right)^3-3mn\left(m+n\right)+mn\)
\(A=1-3mn+mn\)
\(A=1-2mn\)
\(A=1-2m\left(1-m\right)\)
\(A=2m^2-2m+1\)
\(A=2\left(m^2-m+\dfrac{1}{2}\right)\)
\(A=2\left(m^2-2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(A=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Do \(\left(m-\dfrac{1}{2}\right)^2\ge0\) nên \(A\ge\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow m=\dfrac{1}{2}\Rightarrow n=\dfrac{1}{2}\).
Vậy GTNN của A là \(\dfrac{1}{2}\) khi \(m=n=\dfrac{1}{2}\)
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
a: Để A là phân số thì n+5<>0
hay n<>-5
b: Để A=-1/2 thì n-1/n+5=-1/2
=>2n-2=-n-5
=>3n=-3
hay n=-1
c: Để A là số nguyên thì \(n-1⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-3\)
\(=\left[n\left(n+1\right)\right]\left[\left(n-1\right)\left(n+2\right)\right]-3\)
\(=\left(n^2+n\right)\left(n^2+n-2\right)-3\)
\(=\left[\left(n^2+n-1\right)+1\right]\left[\left(n^2+n-1\right)-1\right]-3\)
\(=\left(n^2+n-1\right)^2-1^2-3\)
\(=\left[\left(n^2+2.\frac{1}{2}.n+\frac{1}{4}\right)-1,25\right]^2-4\)
\(=\left[\left(n+\frac{1}{2}\right)^2-1,25\right]^2-4\ge\left(-1,25\right)^2-4=-\frac{39}{16}\)
\(\Rightarrow MinA=-\frac{39}{16}\Leftrightarrow n=-\frac{1}{2}\)
Vậy ...