\(Cho:x+y+z=0\)
\(CMR:\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy :
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)
Tương tự ta cũng có :
\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)
\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)
Cộng theo vế ta được :
\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{x+z}{4}\ge2\sqrt{\frac{x^4}{y^2\left(x+z\right)}.\frac{x+z}{4}}=\frac{x^2}{y}\)
ttu ta sẽ có vt \(\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\frac{x+y+z}{2}\ge\frac{\left(x+y+z\right)^2}{x+y+z}-\frac{x+y+z}{2}=\frac{x+y+z}{2}\)
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) ta tính được \(A=\frac{1}{4}\)
Ta sẽ chứng minh nó là GTNN của A
Thật vậy áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)
Do đó ta cần phải chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)
\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)
\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\) (đúng)
Vậy \(x=y=z=\frac{1}{3}\) thì \(A_{Min}=\frac{1}{4}\)
(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)
=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)
=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]
=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)
=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)
=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy
=x2
\(x;y;z\rightarrow q;h;p\)
\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)
\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)
\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)
shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)
\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
Phân tích đến đây rồi ạ :
\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)
Từ cái này suy ra được đpcm hay cần thêm bước nào nữa k ạ ?
\(VT=2x^2+2y^2+2z^2-2xy-2yz-2zx=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)\(VT=VP\Leftrightarrow2\left(x^2+y^2+z^2-2xy-2yz-2zx\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow x^2+y^2+z^2=xy+yz+zx\)
Mà \(x^2+y^2+z^2\ge xy+yz+zx\)(tự c/m)
(Dấu "="\(\Leftrightarrow x=y=z\))
=> đpcm
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
Ta có
\(\left(x^2+y^2+z^2\right)^2-2\left(x^4+y^4+z^4\right)\)
\(=2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4\)
\(=\left(z^2x^2+2z^2xy+z^2y^2\right)+\left(z^2x^2-2z^2xy+z^2y^2\right)+\left(-x^4+2x^2y^2-y^4\right)-z^4\)
\(=z^2\left(x+y\right)^2+z^2\left(x-y\right)^2-\left(x^2-y^2\right)^2-z^4\)
\(=z^2\left(\left(x+y\right)^2-z^2\right)-\left(x-y\right)^2\left(\left(x+y\right)^2-z^2\right)\)
\(=\left(\left(x+y\right)^2-z^2\right)\left(z^2-\left(x-y\right)^2\right)\)
\(=\left(x+y+z\right)\left(x+y-z\right)\left(z-x+y\right)\left(z+x-y\right)=0\)
Vậy \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
khó vậy