cho a thuộc Q,b thuộc I.chứng tỏ a+b là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử a + b = x là 1 số hữu tỉ
Ta có : b = x - a
Mà a \(\in\)Q , x \(\in\)Q nên b \(\in\)Q ( trái với đề bài là b \(\in\)I )
Vậy ...
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Giả sử ab là số hữu tỉ :ab =c (hữu tỉ )
\(\Rightarrow a=\frac{c}{b}\in Q\).Vô lí vì a là số vô tỉ
Bài toán tương tự :\(a\in I;b\in Q\Rightarrow\frac{a}{b}\in I\)
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương