Tìm 1 số tự nhiên a thỏa mãn a:7 và a:4 hoặc 6 đều dư 3, biết rằng a<350
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:a-3chia hết cho 4,6,7 và a,350
=>a-3 là bội chung của 4,6,7
ta có:bcnn(4,6,7)=168
=>bc(4,6,7)={0,168,336,..,}
do:a-3<347
=>a-3=168 hoặc336
=>a=171hoặc339
Khi đó a+2 chia hết cho 7 và 6 suy ra x+2 thuộc BC(7;6)
Ta có:7=7
6=2.3 Suy ra BCNN(7;6)=7.2.3=42
a+2 thuộc BC(7;6)={0;42;84;....}
a thuộc{40;82;...}
Mà a<350 nên a thuộc {42;84;124;334}
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
Vì a:7,4,6 đều dư 3 nên ta tìm BCNN(7,4,6) rồi cộng thêm3
BCNN(7,4,6)=84+3=87
Thử: 87:7=12 dư 3
87:4=21 dư3
87:6=14 dư 3
Vậy đáp án là 87 thỏa mãn đề bài
Chúc bạn hoc tốt !
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301