Cho đường tròn tâm O, đường kính AB, bán kính R, từ điểm C trên tia đối của BA kẻ một cát tuyến cắt đường tròn ở E và D(E nằm giữa C và D) cho góc DOE bằng chín mươi độ và OC=3R
a)tính CD và CE theo R?
b)Chứng minh CE. CD =CA. CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔCEB và ΔCAD có
\(\widehat{CEB}=\widehat{CAD}\left(=180^0-\widehat{DEB}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCEB\(\sim\)ΔCAD(g-g)
Suy ra: \(\dfrac{CE}{CA}=\dfrac{CB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CD=CA\cdot CB\)(đpcm)
a)Áp dụng định lí py-ta-go có:
\(DE=\sqrt{OD^2+OE^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Dễ chứng minh được: \(\Delta EBC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CE}{DC}\)\(\Rightarrow CD=\dfrac{AC.BC}{EC}=\dfrac{\left(OA+OC\right).\left(OC-OB\right)}{DC-DE}\)
\(\Leftrightarrow CD=\dfrac{8R^2}{DC-\sqrt{2}R}\)
\(\Leftrightarrow DC^2-\sqrt{2}R.DC-8R^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\\CD=\dfrac{R\left(-\sqrt{34}+\sqrt{2}\right)}{2}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)
Có \(EC=DC-DE=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}-\sqrt{2}R=\dfrac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)
Vậy...
a: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
Do đó; ΔABCđồng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
=>AD*AC=AH*AO
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được