Chứng minh\(7^{1000}-3^{1000}\)chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
\(7^{1000}=\left(7^4\right)^{250}=\left(49\cdot49\right)^{250}\)có tận cùng là 1
\(3^{1000}=\left(3^4\right)^{250}=\left(9\cdot9\right)^{250}\)có tận cùng là 1
Hiệu \(7^{1000}-3^{1000}\)có tận cùng là 0 nên chia hết cho 10. đpcm.
Ta có:
71000 - 31000
= (74)250 - (34)250
= (...1)250 - (...1)250
= (...1) - (...1)
= (...0) chia hết cho 10
=> đpcm
Ủng hộ mk nha ☆_☆^_-
Câu hỏi của Đỗ Quang Thanh - Toán lớp 7 - Học toán với OnlineMath
c,
(434)10. 433- (174)4 . 17
(434)10 co chu so tan cung la 1
433 co chu so tan cung la 7
(174)4 co chu so tan cung la 1
17 co chu so tan cung la 7
suy ra 4343-1717 co tan cung la chu so 0 chia het cho10
vay hieu 4343-1717 chia het cho 10
71000 = (78)125
Mà :
78 đồng dư với -1 (mod17)
=> (78)125 đồng dư với -1125 đồng dư với -1 đồng dư với 16 (mod17)
=> 71000 chia 17 dư 16
Ta có :
31000 = (38)125
Mà :
38 đồng dư với -1 (Mod17)
=> (38)125 đồng dư với -1125 đồng dư với -1 đồng dư với 16 ( mod17)
=> 31000 chia 17 dư 16
=> 71000 - 31000 đồng dư với 16 - 16 đồng dư với 0 (mod17)
=> 71000 - 31000 chia hết cho 17 (ĐPCM)
=>
đồng dư là gì bạn nhỉ? mình chưa học