K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2014

Vi P là số nguyên tố lớn hơn 3 nên P không chia hết cho 3 \(\Rightarrow\)P = 3k + 1 hoặc 3k + 2

+)Nếu P = 3k + 2 thì P + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên P + 4 là hợp số (loại)

+)Nếu P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 và lớn hơn 3 nên P + 8 là hợp số (đpcm)

3 tháng 11 2016

Ví p là SNT > 3

=> p có dạng 3q + 1 hoặc 3p + 2

+ Xét p = 3p + 2

Ta có :

p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )

Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số

=> loại p = 3p + 2

Vậy p = 3q + 1

Ta có :

p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )

Ví 3 ( q + 3 ) chia hết cho 3

Mà p + 8 > 3

=> p + 8 là hợp số

Vậy p + 8 là hợp số

3 tháng 11 2018

Trong olm có ai ở Sài gòn không? ở quận mấy?

có ai ở long xuyên không?

có ai ở Đà lạt không?

Nếu có hãy nhắn tin vs mình nhé! Mình đã đọc nội qui.vui lòng ko đăng cái  thứ nhảm loz ấy lên đây=))

21 tháng 11 2019
(n-4) chia hết cho (n+1)
31 tháng 10 2015

Vì p là số nguyên tố, p>3 nên p có một trong 2 dạng sau:

p=3k+1( k thuộc N*)

p=3k+2(k thuộc N*)

Nếu p=3k+2 ta có:

3k+2+4=3k+6=3(k+2) chia hết cho 3=> là hợp số(loại) vì p+4 là số nguyên tố

Nếu p=3k+1 ta có:

3k+1+8=3k+9=3(k+3) là hợp số phù hợp với đề bài

Vậy số nguyên tố p có dạng 3k+1 thì p+8 là hợp số.

Tick nha

 

31 tháng 10 2015

Vì p là số nguyên tố, p>3 nên số p có 1 trong 2 dạng:

p=3k+1(k thuộc N*)

p=3k+2(k thuộc N*)

Thử vảo là xong

 

8 tháng 1 2017

Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5

Neu p=6k+2 thi chia het cho 2

Neu p= 6k+3thi chia het cho 3

Neu p =6k+4 thi chia het cho 2

Vay p chi co the =6k+1 hoac 6k+5

19 tháng 12 2017

làm cả tình bày cho mk nha

7 tháng 11 2018

bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25

25 tháng 3 2019

\(p\)là số nguyên tố\(>3\)

Nên\(p=3k+1\)hoặc\(3k+2\)

Xét\(p=3k+1,p+4=3k+1+4=3k+5\)(thỏa mãn)

Xét\(p=3k+2,p+4=3k+2+4=3k+6=3\left(k+2\right)\)là hợp số (loại)

Vậy\(p=3k+1,p+8=3k+1+8=3k+9=3\left(k+3\right)\)là hợp số\(\left(đpcm\right)\)

4 tháng 1 2018

p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 nhưng do p + 4 là số nguyên tố nên p không có dạng 3k + 2

+ Nếu p có dạng 3k + 1 thì p + 8 có dạng : ( 3k + 1 ) + 8 = 3k + 9 chia hết cho 3 là hợp số

Vậy p + 8 là hợp số ( dpcm )

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)