Cho tam giác ABC, AD là tia phân giác của góc A ( D thuộc BC). Trên cạnh AC lấy diểm E sao cho AB=AE. CMR AD= DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
a, gọi giao điểm AD và BE là F
theo bài ra có AD phân giác \(\) của \(\angle\left(BAC\right)\)
=>AF là phân giác của \(\angle\left(BAE\right)\)(1)
lại có AE=AB=>tam giác ABE cân tại A (2)
từ(1)(2)=>tam giác ABE cân tại A có AF là phân giác nên đồng thời cũng là đường cao\(=>AF\perp BE\)
hay \(AD\perp BE\)
b, theo BDT tam giác ABD \(=>BD< AB+AD\)
tương tự trong tam giác ACD \(=>CD< AD+AC\)
\(=>BD-CD< AB+AD-AD-AC=AB-AC< 0\)(do AB<AC)
\(=>BD-CD< 0=>BD< CD\)