Cho tam giác ABC có BC=2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN=EM
a, So sánh góc BAC và góc ACB
b,c/m AB=EM
Mong mọi người giúp đỡ
THANKS YOU SO MUCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác NAB và tam giác NEm , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)
a) xét tam giác NAB và tam giác NEM có
AN=EN ( theo gt )
BN=MN ( theo gt )
góc ANB = góc MNE ( đối đỉnh )
Vậy => tam giác NAB = tam giác NEM ( c.g.c )
b0 vì MB=MC ( gt ) (1)
Mà BC=2AB ( gt ) (2)
từ (1) và (2) => AB=MB
=> tam giác MAB cân tại B
c) xét tam giác CAE có
AN = NE ( Theo gt ) => CN là trung tuyến thuộc cạnh AE (1)
Vì MN = BN ( gt ) ; MB = MC ( gt ) => Mn = 1/2 MC hay CM = 2/3 CN (2)
từ (1) và (2) => M là trọng tâm của tam giác ACE
k cho mk nha
a) Xét tam giác NAB và tam giác NEM có:
NA = NE ( gt)
ANB = ENM ( đối đỉnh )
BN = NM ( N là trung điểm BM )
=> tam giác NAB = tam giác NEM ( cgc)
b. Ta có M là trung điểm BC (gt)
=> BM = MC = 1/2 BC (1)
Lại có : BC = 2 AB ( gt)
=> AB = 1/2 BC (2)
Từ (1) và (2) => BM=MC=AB hay BM = AB
=> tam giác ABM cân tại B.
c. Ta có : tam giác ANB = tam giác ENM ( cm câu a)
=> góc ABN = góc EMN (góc tương ứng )
Mà chúng ở vị trí so le trong => AB // ME
Gọi giao điểm của EM và AC là I => IE // AB (I thuộc AC do cách dựng) => MI // AB
Xét tam giác ABC có : IM // AB ( cmt)
=> MC / BM = CI / IA
Mà MC = BM (gt) => CI = CA => EI là trung tuyến tam giác AEC
Mà CN cũng là trung tuyến tam giác AEC ( AN = NE )
CN giao EI tại M => M là trọng tâm tam giác AEC.
d. Ta có M là trọng tâm tam giác AEC (cmt)
=> MA = MC(tc trọng tâm tam giác)
=> MA = AB = MB => Tam giác ABM đều => góc BAM = 60 độ
Ta có : AN là trung tuyến tam giác ABN (N là trung điểm NB)
=> AN cũng là đường cao và là đường phân giác
=> ANB = 90 độ và góc BAN = 1/2 . 60= 30 độ
Xét tam giác ABN có
Góc A < B < N
=> BN < AN < AB ( quan hệ giữa cạnh và góc đối diện)
Hay AB > AN => AB > 2/3 AN.
Câu a thui
A, Xét Tam giác ABC và Tam giác AED có
AB=AD
BD cạnh chung
AC=AE
=>TAM GIÁC ABC=TAM GIÁC AED
a) Xét tam giác NAB và tam giác NEM có AN=EN; BN=MN; góc ENM =góc BNA =>2 tam giác bằng nhau b)ta có BC=2Ab => Bc/2 = AB => BM=cm=ma =>tam giác MAb cân tại b
a) Xét ΔABC có BC>AB(BC=2AB>AB)
mà góc đối diện với cạnh BC là \(\widehat{BAC}\)
và góc đối diện với cạnh AB là \(\widehat{ACB}\)
nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
Sửa đề: AN=NE
b) Xét ΔANB và ΔENM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của MB)
Do đó: ΔANB=ΔENM(c-g-c)
Suy ra: AB=EM(hai cạnh tương ứng)