Bài 1 tìm x ,y
a. 2x2.3y=12x
b. (x+1).(xy-1)=3
Bài 2 số 12345678910 khi phân tích ra thừa số nguyên tố có chứa số 3ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
a,
1000! = 1.2.3...1000
+) Các số chứa đúng lũy thừa 73 (= 343) từ 1 đến 1000 là: 343; 686 => có 2 x 3 = 6 thừa số 7
+) Các số chứa lũy thừa 72 từ 1 đến 1000 là: 49; .....; 980 => có (980 - 49) : 49 + 1= 20 số , trừ 2 số 343; 686
=> có 18 số chứa đúng lũy thừa 72 => 18 x 2 = 36 thừa số 7
+) Các số chứa lũy thừa 7 từ 1 đến 1000 là: 7 ; 14; ...; 994 => có (994 - 7) : 7 + 1 = 142 số , trừ 20 chứa 72 trở lên
=> có 142 - 20 = 122 số chứa đúng 1 thừa số 7
Vậy có tất cả 6 + 36 + 122 = 164 thừa số 7
=> 1000! phân tích ra thừa số nguyên tố chứa 7164
b,
n2 + 2n = n2 + 2n.1 = n2 + 2n.1 + 1 - 1 = n2 + 2n.1 + 12 - 1 = (n2 + 2n.1 + 12) - 1
Sử dụng hằng đẳng thức: (Bạn tự tìm hiểu về 7 hằng đẳng thức đáng nhớ)
\(\Rightarrow\) (n+1)2 - 1
mà (n+1)2 là số chính phương
\(\Rightarrow\) (n+1)2 - 1 chỉ có thể là 0
\(\Rightarrow\) n chỉ có thể là 0
khi phân tích 1.2.3.4...1000 ra thừa số nguyên tố ta được:
Vậy có 6+15+32+75+148+222=498 thừa số 3 khi phân tích 1.2.3...1000 ra thừa số nguyên tố.
1 a)x=1;y=1
2. Có số 3
vì sao