Lớp 6A có 54 HS,lớp 6B có 42 HS,lớp 6C có 48 HS.Trong ngày lễ khai giảng,ba lớp cùng xếp thành một số hàng dọc như nhau để diểu hành mà ko lớp nào có người lẻ hàng.Tính số hàng dọc nhiều nhất có thể xếp được.
Các bạn giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.Vì cả 3 lớp xếp cùng số hàng như nhau nên số học sinh của mỗi lớp phải chia hết cho số hàng
gọi a là số hàng 3 lớp có thể xếp được
Ta có: a thuộc ƯC(54, 42, 48)
Vì số hàng dọc cần tìm là nhiều nhất nên a thuộc ƯCLN(54, 48, 42) = 2.3 = 6
Vậy số hàng dọc nhiều nhất có thể xếp là 6 hàng
a: Số hàng dọc nhiều nhất có thể xếp được là:
ƯCLN(54;42;48)=6(hàng)
b: Tổng số học sinh là 54+42+48=144 bạn
Mỗi hàng có 144/6=24 bạn
Vì số học sinh xếp đủ nên số hàng dọc là ước chung của số học sinh 3 lớp
Số hàng dọc nhiều nhất cũng là ước chung lớn nhất của số học sinh ba lớp
Ta có: 54 = 2.33 42 = 2.3.7 48 = 24.3
ƯCLN(54; 42; 48) = 2.3 = 6
Vậy số hàng dọc nhiều nhất xếp được là 6 hàng
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
gọi số hàng có thể xếp được là a:
theo bài ra ta có: 54 chia hết a; 42 chia hết a ; 48 chia hết a và a lớn nhất
=> a= ƯCLN(54;42;48)
Ta có: 54= 2 .33 ; 42=2.3.7 ; 48=24. 3
=> ƯCLN(54;42;48)= 2.3=6
vậy số hàng dọc nhiều nhất có thể xếp được là 6 hàng
Khi đó mỗi hàng dọc có số học sinh là:(54+42+48):6 =24 (học sinh)
vì mỗi hàng dọc có 24 học sinh nên khi đó mỗi lớp có số hàng ngang là: 24 hàng
đáp số : 6 hàng dọc
24 hàng ngang
6 hàng
chuẩn