Giải hệ phương trình
1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)
7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)
8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)
9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)
10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)
12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)
13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)
14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)
15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)
16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)
17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)
18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ
b) xy(x2 + y2) + 2 = (x + y)2
<=> xy(x2 + y2 + 2xy) - 2(xy)2 + 2 = (x + y)2
<=> (x + y)2(xy - 1) - 2(xy - 1)(xy + 1) = 0
<=> (xy - 1)[(x + y)2 - 2xy - 2] = 0
<=> (xy - 1)(x2 + y2 - 2) = 0
<=> \(\left[{}\begin{matrix}xy=1\\x^2+y^2=2\end{matrix}\right.\)
Với xy = 1
5x2y - 4xy2 + 3y3 - 2(x + y) = 0
<=> xy(5x - 4y) + 3y3 - 2x - 2y = 0
<=> 3x - 6y + 3y3 = 0
<=> x = 2y - y3 (1)
Thay (1) vào xy = 1
<=> (2y - y3)y = 1
<=> y4 - 2y2 + 1 = 0
<=> (y2 - 1)2 = 0
<=> y = \(\pm1\)
Với y = 1 => x = 1
y = -1 => x = -1
Khi x2 + y2 = 2
<=> x2 = 2 - y2 ; y2 = 2 - x2
khi đó 5x2y - 4xy2 + 3y3 - 2(x + y) = 0
<=> 5y(2 - y2) - 4x(2 - x2) + 3y3 - 2x - 2y = 0
<=> -2y3 + 8y - 10x + 4x3 = 0
<=> - y3 + 4y - 5x + 2x3 = 0
<=> x3 - y3 - 4(x - y) + x3 - x = 0
<=> (x - y)(x2 - xy + y2) - 4(x - y) + x3 - x = 0
<=> (x - y)(2 - xy) + x(x2 - 1) - 4(x - y) = 0
<=> (x - y)(-2 - xy) + x(-y2 + 1) = 0
<=> -2x - x2y + 2y + xy2 - xy2 + x = 0
<=> -x - x2y + 2y = 0
<=> -x - x2y + (x2 + y2)y = 0
<=> y3 = x
Khi đó x2 + y2 = 2
<=> y6 + y2 = 2
<=> y6 + y2 - 2 = 0
<=> (y6 - 1) + (y2 - 1) = 0
<=> (y - 1)(y + 1)(y4 + y2 + 1) + (y - 1)(y + 1) = 0
<=> (y - 1)(y + 1)(y4 + y2 + 2) = 0
<=> \(\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)(vì y4 + y2 + 2 > 0)
Với y = 1 => x = 1
Với y = -1 => x = -1
Vậy (x;y) = (1 ; 1) ; (-1 ; -1)