CMR: a3+5a chia hết cho 6 với mọi a thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tổng:
(5a-4b)+4(2a+b)=5a-4b+8a+4b
<=>(5a-4b)+4(2a+b)=13a
Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z
=> [(5a-4b)+4(2a+b)] chia hết cho 13 (1)
Ta có (5a-4b) chia hết cho 13 - Bài cho (2)
Từ (1) ; (2) => 4(2a+b) chia hết cho 13
mà (4,13) =1
=> (2a+b) chia hết cho 14
Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
a^3 + 5a = a^3 - a + 6a
= a( a^2 - 1) + 6a
= a( a-1) ( a+1) + 6a
nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z
nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6
vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6
nên a^3 -a + 6a chia hết cho 6
hay a^3 + 5a chia hết cho 6 ( đpcm)
a^3 + 5a = a^3 - a + 6a
= a( a^2 - 1) + 6a
= a( a-1) ( a+1) + 6a
nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z
nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6
vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6
nên a^3 -a + 6a chia hết cho 6
hay a^3 + 5a chia hết cho 6 ( đpcm)
a3 + b3 + c3 + 5a + 5b + 5c
= a3 - a + b3 - b + c3 - c + 6a + 6b + 6c
= a(a2 - 1) + b(b2 - 1) + c(c2 - 1) + 6a + 6b + 6c
= a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c)
a;b;c \(\in Z\) nên a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) là tích 3 số nguyên liên tiếp
=> a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) chia hết cho 3
Mà 6(a + b + c) chia hết cho 6
Do đó a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c) chia hết cho 6
hay a3 + b3 + c3 + 5a + 5b + 5c chia hết cho 6 (đpcm)
n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6
hay n^3-n chia hết cho 6
n^5-n=n(n-1)(n+1)(n^2+1)
=n(n-1)(n+1)(n^2-4+5)
=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)
n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp
=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5
=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10
n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
=>5n(n-1)(n+1) chia hết cho 10
=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10
hay n^5-n chia hết cho 10
ta có a^3+5a= a^3-a+6a
= a(a^2-1)+6a
= a(a-1)(a+1)+6a
vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
=> a(a-1)(a+1) chia hết cho 2 và 3
mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6
lại có 6a chia hết cho 6 với mọi a thuộc z
=> a(a-1)(a+1) +6a chia hết cho 6
hay a^3+5a chia hết cho 6
cm bằng qui nạp
thử n=1 ta có n^3+5n = 6 => dúng
giả sử đúng với n =k
ta cm đúng với n= k+1
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết
nế k chẳn thì đương nhiên chia hết
vậy đúng n= k+ 1
theo nguyên lý qui nạp ta có điều phải chứng minh