Cho n thuộc N. Tìm ước chung lớn nhất (2n+3; n+7)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LT
2
BT
11 tháng 11 2016
Gọi d là UCLN của (2n+3; n+7)
Ta có: 2n+3:d và n+7:d
Hay (2n+3):d và (2n+14):d
Hay 2n+14-2n-3:d <=> 11:d
Vậy UCLN của 2 số là 11
NT
0
NH
1
DT
14 tháng 1 2018
gọi ƯCLN của (n+1)/2 và 2n+1 là d
=> (n+1)/2 chia hết cho d
=> 4.((n+1)/2) chia hết cho d
=> 2n +2 chia hết cho d
mà 2n+1 chia hết cho d
=>2n+2-(2n+1)chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
=> ƯCLN của (n+1)/2 và 2n+1 là 1
DT
1
30 tháng 11 2019
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
HN
0
Ta có :
Gọi b là ước chung lớn nhất của ( 2n + 3 ; n + 7 )
Cho n thuộc N. Tìm ước chung lớn nhất (2n+3; n+7)
Ta có: 2n+3:b và n+7:b
Hay (2n+3):b và (2n+14):b
Hay 2n+14-2n-3:b <=> 11:b
Vậy ước chung lớn nhất của 2 số là 11
Cậu đăng 2 bài giống nhau à ?
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)