Bài 3: (1,5 điểm) Trong kỳ thi tuyển sinh vào lớp 10 THPT Tỉnh Nghệ An năm học 2019 – 2020, hai trường A và B có 250 học sinh dự thi. Số học sinh thi đậu vào các trường công lập của hai trường là 210 học sinh. Biết rằng tỉ lệ đậu của trường A là 80%, trường B là 90%. Tính số học sinh dự thi của mỗi trường.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh dự tuyển của trường là (học sinh) ()
Số học sinh dự tuyển của trường là (học sinh) ()
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: (1)
Số học sinh trúng tuyển của trường là: (học sinh)
Số học sinh trúng tuyển của trường là: (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là học sinh nên ta có phương trình
(2)
Từ (1) và (2) ta có hệ phương trình
Vậy số học sinh dự thi của trường là học sinh
Số học sinh dự thi của trường là học sinh.
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
x là sô học sinh dự thi trường A
số học sinh dự thi cả 2 trường 420:84%=500
SHS thi đỗ của A:80%x
SHS thi đỗ của B: (500-x)90%
PT: 80%+(500-x)90%=420
A=300, B=200
Gọi x, y (học sinh) lần lượt là số học sinh dự thi vào lớp 10 của trườn A và Trường B ( x,y thuộc N*).
Vì có 210 học sinh thi đậu vào lớp 10 đat tỉ lệ 84% nên: (x+y).84%=210
<=> x + y = 250 (1).
Vì số học sinh đậu vào trường A Và B lần lượt là 80% và 90% nên: 0,8x + 0,9y= 210 (2).
Từ 1 và 2 ta có hpt:
x + y= 250
0,8x + 0,9y= 210
X= 150 hs
Y= 100 hs
Vậy có 150hs thi vào trường A và 100 hs thi vào trường B.
Số hs thi đậu vào trường A là: 150.80%= 120hs
Số hs thi đậu vào trường B là:
100.90%=90 hs.
Gọi số học sinh trúng tuyển của trường A và trường B lần lượt là a,b
Tổng số học sinh trúng tuyển là;
250*84%=210(bạn)
=>a+b=210
Số học sinh của trường A là:
a:80%=a:4/5=5/4a
Số học sinh của trường B là:
b:90%=b:9/10=10/9b
Theo đề, ta có hệ phương trình:
a+b=210 và 5/4a+10/9b=250
=>a=120 và b=90
Trường hợp 1 : Trường đại học chỉ xét 1 trong 2 môn Toán hoặc Văn :
Có : \(2.C_6^2=30\) cách
Trường hớp 2 : Trường đại học xét cả 2 môn Toán và Văn :
Có : \(1.C_6^2=6\) cách
Vậy có các trường hợp là : 30+6=36 cách
Tổng số thí sinh tham gia thi:
80 × 24 = 1920 (thí sinh)
Tổng số phần bằng nhau:
2 + 3 = 5 (phần)
Số thí sinh vào trường Nguyễn Viết Xuân:
1920 : 5 × 2 = 768 (thí sinh)
Số thí sinh vào trường Lê Xoay:
1920 - 768 = 1152 (thí sinh)
Gọi số học sinh dự thi của trường A là : x ( học sinh ) ( x \(\in\) N* ; x < 250 )
=> Số học sinh dự thi trường B là : 250 - x ( học sinh )
+) Số học sinh đậu của trường A là : 80%x (hs)
+) Số học sinh đậu trường B là : 90%(250-x) (hs)
Theo bài ra, ta có :
80%x + 90%(250-x)=210
<=> \(\dfrac{4}{5}x+225-\dfrac{9}{10}x=210\)
<=> \(-\dfrac{1}{10}x=-15\)
<=> x = 150 (TM)
Vậy số hs dự thi trường A là : 150hs ; trường B là : 250 - 150 = 100 (hs)