Chứng minh
(n+20052006)(n+20062005)chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
(n+2005^2006)(n+2006^2005)
Nhận thấy các số có tận cùng = 5 thì nhân cho chính nó cũng có tận cùng = 5 => 20052006 có tận cùng = 5
Các số có tận cùng bằng 6 thì nhân cho chính nó bao nhiên lần cũng có tận cùng bằng 6 => 20062005có tận cùng =6.
ta có n có 2 trường hợp:
TH1: n là số lẻ
Nếu n là lẻ thì n+20052006 là chẵn
n+20062005 là lẻ
mà chẵn x lẻ= chẵn
TH1: (n+20052006)(n+20062005) chia hết cho 2
TH2: n= chẵn
Nếu là chẵn thì n+20052006 là lẻ
n+20062005 là chẵn
mà chẵn x lẻ cũng = chẵn
TH2: (n+20052006)x(n+20062005) chia hết cho 2.
Ta thấy trong mọi trường hợp (n+2005^2006)(n+2006^2005) đều chia hết cho 2 ĐPCM