Hai vòi nước chảy vào một cái bể trong 4 giờ đầy.Nếu mở vòi thứ nhất 2 giờ và vòi thứ hai 5 giờ thì được 3/4 bể .Hỏi nếu chảy riêng thì mỗi mỗi vòi chảy đầy bể trong bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)
thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)
Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể
⇒ 1 x + 1 y = 1 6 (1)
vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể ⇒ 2. 1 x + 3. 1 y = 2 5 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15
Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.
Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.
gọi x, y là số phần bể mà vòi nước thứ nhất và thứ hai chảy được trong 1 giờ
ta có hệ
\(\hept{\begin{cases}x+y=\frac{1}{15}\\3x+5y=25\%=0.25\end{cases}}\Rightarrow\hept{\begin{cases}3x+3y=0.2\\3x+5y=0.25\end{cases}}\)
\(\Rightarrow2y=0.05\Rightarrow\hept{\begin{cases}y=0.025=\frac{1}{40}\\x=\frac{1}{24}\end{cases}}\) Vậy vòi thứ nhất cần 2 4 giờ, vòi thứ hai cần 40 giờ để chảy đầy bể
1 giờ cả hai vòi chảy đươc là :
( 2 + 5 ) * 3/4 = ( ban tự biết )
( đây là gợi ý thôi nhé )