Vẽ đồ thị hàm số
a) y = x2 ; y = 3x - 1
b) Tìm giao điểm hai đồ thị hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=0 và y=3 vào y=x+b, ta được:
b+0=3
hay b=3
- Xét phương trình hoành độ giao điểm :
\(x^2-3mx+m^2+1=mx+m^2\)
\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )
Có : \(\Delta^,=4m^2-1\)
- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành
<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .
<=> \(\Delta^,=4m^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)
( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )
Câu 1:
1: Ta có: \(16\sqrt{9}-9\sqrt{16}\)
\(=16\cdot3-9\cdot4\)
\(=48-36=12\)
2:
a) Thay x=2 và y=8 vào hàm số \(y=a\cdot x^2\), ta được:
\(a\cdot2^2=8\)
\(\Leftrightarrow4a=8\)
hay a=2
Vậy: a=2
a) y = x2 : Vẽ parabol đi qua 3 điểm O(0;0); (1;1) ; (-1;1)
y = 3x - 1: Tìm 2 điểm thuộc đồ thị: Chọn điểm A(0;-1), B (1;2). Đồ thị hàm số y = 3x - 1 là đường thẳng đi qua 2 điểm A; B
b) Hoành độ giao điểm là nghiệm của phương trình:
x2 = 3x - 1 <=> x2 - 3x - 1 = 0
\(\Delta\) = (-3)2 - 4.1.(-1) = 13
=> x1 = \(\frac{3+\sqrt{13}}{2}\) ; x2 = \(\frac{3-\sqrt{13}}{2}\)
Gọi 2 giao điểm là M(x1; y1); N (x2; y2)
y1 = 3x1 - 1 = \(\frac{9+9\sqrt{13}}{2}\) - 1 = \(\frac{7+3\sqrt{13}}{2}\)
y2 = 3x2 - 1 = \(\frac{9-3\sqrt{13}}{2}\) - 1 = \(\frac{7-3\sqrt{13}}{2}\)
Vậy........