chứng tỏ rằng tích của ba số tự nhiên chẵn liên tiếp chia hết cho 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi tích 3 só tự nhiên chẵn liên tiếp là : 2a , 2a + 2 + 2a + 4 . ta thấy :
2a . ( 2a + 2 ) . ( 2a + 4 ) = 8a . ( a + 1 ) . ( a + 2 )
nếu a là số chẵn thì a và a + 2 sẽ chia hết cho 2
nếu a là số lẻ thì a + 1 chia hết cho 2
=> a . ( a + 1 ) . ( a + 2 ) chia hết cho 2
nếu a chia 3 dư 1 thì a + 2 sẽ chia hết cho 3
nếu a chia 3 dư 2 thì a + 1 sẽ chia hết cho 3
=> a . ( a + 1 ) . ( a + 2 ) chia hết cho 3
từ những lập luận trên , ta được : a. ( a + 1 ) . ( a + 2 ) chia hết cho 6
=> a. ( a + 1 ) . ( a + 2 ) chia hết cho cả 6 và 8 => cũng chia hết cho 48
KL : 2a . ( 2a + 2 ) . ( 2a + 4 ) chia hết cho 48
vậy tích 3 số tự nhiên chẵn liên tiếp sẽ chia hết cho 48
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Ta có ví dụ sau
4.6.8=192 chia hết cho 48
Gọi ba số chẵn tự nhiên liên tiếp là 2k,2k+2,2k+4 (k \(\in\)N)
Ta có: 2k.(2k+2).(2k+4) = 8k.(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số tự nhiên liên tiếp => (k+1)(k+2) chia hết cho 6 => 8k(k+1)(k+2) chia hết cho 8.6 = 48