TINH
B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
hung ui GIAI HO TI
KO GIẢI ĐC MAI LÊN LỚP SẼ BIẾT
HHHAAU QQUUUAAA DDDOOO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-[(n-2)(n-1)n(n+1)]
=(n-1)n(n+1)(n+2)-0.1.2.3=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
k nha
B = 1.2.3 + 2.3.4 + ... + ( n - 1 )n ( n + 1 )
=> 4B = 1.2.3.4 = 2.3.4.4 + ... + ( n - 1 )n ( n + 1 ).4
=> 4B = 1.2.3.4 + 2.3.4.( 5 - 1 ) + ... + ( n - 1 )n ( n + 1 ). ( n + 2 - ( n - 2 ))
=> 4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .. + ( n - 1 ) . n . ( n + 1 ) - ( n - 2 ) . ( n - 1 ) . n
=> 4B = ( n - 1 ) . n . ( n + 1 )
=> B = (n-1)n(n+1)(n+2)/4
Khi gặp dạng như thế này, ta xét số hạng như thế này thì ta sẽ có được số cần nhân chính là số liền sau của số cuối cùng trong tích đó. Nói dễ hiểu hơn là nếu có A = 1.2 + 2.3 + 3.4 +... thì ta xét số hạng đầu tiên của tổng là 1.2 thì ta có số liền sau của 2 là 3. Vậy nên nhân A cho 3. Cái này gọi là quy luật để giải quyết bài toán kiểu này rồi.
Ta có:
\(A=1+1.2+1.2.3+...+1.2.3.....n\)
\(=1!+2!+3!+4!+...+n!\)
Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.
Ta lại có:
\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)
\(=33+\left(...0\right)\)
\(=\left(...3\right)\)
Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.
Ta có : B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
= 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + (n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4 +2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + (n-1)n(n+1).(n+2) - (n-2).(n-1).n(n+1)
= ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + .... + ( n-1).n.(n+1).(n+2)
= 0 + 0 + 0 + ... + ( n-1).n.(n+1).(n+2)
= ( n-1).n.(n+1).(n+2)
Vậy B = ( n-1).n.(n+1).(n+2)