GPT: \(2\sin\left(2x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)
\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)
\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$
PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$
$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$
$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$
$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$
$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0
$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$
$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$
Vậy......
a.
\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)
\(\sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{2}\Leftrightarrow x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{3\pi}{4}+k2\pi\left(k\in Z\right)\)
`sin(x- (pi)/4) = (pi)/2`
`<=> x - (pi)/4 = (pi)/2 + k2(pi)`
`<=> x = (3(pi))/4 + k2(pi)`.
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow2sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{2}\) \(\Rightarrow sin\left(\frac{\pi}{4}+2x\right)=\frac{3}{4}\)
\(\Rightarrow sin\frac{\pi}{4}+sin2x=\frac{3}{4}\) \(\Rightarrow sin2x=\frac{3}{4}-sin\left(\frac{\pi}{4}\right)=0,74\)
\(\Rightarrow2x=48\Rightarrow x=\frac{48}{2}=24\)
a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)
\(\Rightarrow3x+60=30+2k180\)
\(\Rightarrow3x=2k180-30\)
\(\Leftrightarrow x=120k-10\)
Vậy ...
b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)
Vậy ...
c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)
Vậy ...
d, Ta có : \(\cot\left(2x+\pi\right)=-1\)
\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)
\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)
Vậy ...
a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))
Vậy...
b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)
Vậy...
d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)
\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)
\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)
Vậy...
\(\Leftrightarrow\sin\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\2x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k2\pi\\2x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
`2sin(2x+\pi/4)=\sqrt{2}`
`<=>sin(2x+\pi/4)=\sqrt{2}/2`
`<=>` $\left[\begin{matrix} 2x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\ 2x+\dfrac{\pi}{4}=\dfrac{3\pi}{4}\end{matrix}\right.$ `(k in ZZ)`
`<=>` $\left[\begin{matrix} 2x=k2\pi\\ 2x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.$ `(k in ZZ)`
`<=>` $\left[\begin{matrix} x=k\pi\\ x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.$ `(k in ZZ)`