Tìm giao điểm của hai đường thẳng: \(y=2x\) và \(y=-x+3\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm d1 và d2:
\(x-m+4=-x+3m-2\)
\(\Leftrightarrow2x=4m-6\)
\(\Rightarrow x=2m-3\Rightarrow y=m+1\)
Để giao điểm thuộc y=2x-3
\(\Rightarrow m+1=2\left(2m-3\right)-3\)
\(\Rightarrow m=\dfrac{10}{3}\)
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Ta có d: −2x + y = 3 ⇔ y = 2x + 3 và d’: x + y = 5 ⇔ y = 5 – x
Xét phương trình hoành độ giao điểm của d và d’: 2x + 3 = 5 – x ⇔ x = 2 3
⇒ y = 5 – x = 5 − 2 3 = 13 3
Vậy tọa độ giao điểm của d và d’ là 2 3 ; 13 3
Suy ra nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là 2 3 ; 13 3
Từ đó y 0 – x 0 = 13 3 − 2 3 = 11 3
Đáp án: A
Bài 3:
Vì (d)//(d1) nên a=3
Vậy: (d): y=3x+b
Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:
\(b+2=0\)
hay b=-2
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
a: Theo đề, ta có hệ:
2a+b=-1 và a+b=-3
=>a=2 và b=-5
b; tọa độ giao là:
2x+y=-3 và 3x-2y=-1
=>x=-1 và y=-1
Đáp án A
Phương trình hoành độ giao điểm của hai đồ thị:
2x + 4 = -x + 7
⇒ 2x + x = 7 -4
⇒ 3x = 3 ⇔ x = 1
Thay x = 1 vào phương trình đường thẳng y = 2x + 4 ta được: y = 2.1+ 4 = 6
Do đó, hai đồ thị đã cho cắt nhau tại A(1; 6)
a. PTTDGD của (d1) và (d2):
\(-2x=x-3\)
\(\Rightarrow x=1\)
Thay x = 1 vào (d1): \(y=-2\cdot1=-2\)
Vậy (d1) cắt (d2) tại điểm A(1;-2)
Lời giải:
a. PT hoành độ giao điểm: $-2x=x-3$
$\Leftrightarrow x=1$
$y=-2x=1(-2)=-2$
Vậy giao điểm của $(d_1), (d_2)$ là $(1,-2)$
b.
Để $(d_1), (d_2), (d_3)$ đồng quy thì $(d_3)$ cũng đi qua giao điểm của $(d_1), (d_2)$
Tức là $(1,-2)\in (d_3)$
$\Leftrightarrow -2=m.1+4\Leftrightarrow m=-6$
Đáp án A
Phương trình hoành độ giao điểm của hai đường thẳng 2x + 1 = x + 2 ⇔ x = 1
Với x = 1 ⇒ y = 3 . Vậy tọa độ điểm A(1; 3)
Hai đường thẳng cắt nhau khi
\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\) thay vào
\(y=2x\Rightarrow y=2\)
Giao của 2 đường thẳng tại điểm có toạ độ (1;2)