Cho tam giác ABC nhọn (AB<AC), đường tròn tâm O đường kính BC cắt AB tại D , AC tại E .Gọi G là giao điểm của BE và CD, F là giao điểm của AH và BC
a, Chứng minh ED.AB = AE.BC
b,Chứng minh BD.BA + CE.CA = BC^2
(Cho các tứ giác ADHE, BDHF, ABFE, CEHF, ACFD nội tiếp)
a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có
góc EAB chung
Do đó:ΔAEB\(\sim\)ΔADC
Suy ra: AE/AD=AB/AC
hay AE/AB=AD/AC
Xét ΔAED và ΔABC có
AE/AB=AD/AC
góc EAD chung
Do đó: ΔAED\(\sim\)ΔABC
Suy ra: AE/AB=ED/BC
hay \(AE\cdot BC=ED\cdot AB\)
b: Xét ΔBDC vuông tại D và ΔBFA vuông tại F có
góc FBA chung
Do đó: ΔBDC\(\sim\)ΔBFA
Suy ra: BD/BF=BC/BA
hay \(BD\cdot BA=BF\cdot BC\)
Xét ΔCEB vuông tại E và ΔCFA vuông tại F có
góc FCA chung
Do đó: ΔCEB\(\sim\)ΔCFA
Suy ra CE/CF=CB/CA
hay \(CE\cdot CA=CB\cdot CF\)
\(BD\cdot BA+CE\cdot CA=BF\cdot BC+CF\cdot BC=BC^2\)