Let \(\hept{\begin{cases}a,b,c,d,e,g\in Z\\a^2+b^2+c^2+d^2+e^2=g^2\end{cases}}\)
Prove that \(abcdeg\)\(⋮2.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
Giải bằng Tiếng Việt thím nhá =))
Giả sử cả 5 số a; b; c; d; e đều lẻ
=> a2; b2; c2; d2; e2 cũng đều lẻ
Ta đã biết số chính phương chia cho 8 chỉ có thể dư 0; 1 hoặc 4 nếu số chính phương đó thuộc N
Mà a2; b2; c2; d2; e2 lẻ nên cả 5 số này đều chia 8 dư 1
=> g2 = a2 + b2 + c2 + d2 + e2 chia 8 dư 5, không là số chính phương
Do đó, trong 5 số a; b; c; d; e; g tồn tại ít nhất 1 số chẵn
=> abcdeg chia hết cho 2 (đpcm)
Đúng y như cách giải của t luôn :)