TINH
1/1.3+1/3.5+.........+1/9.99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
P = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49.51
P = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/51
P = 1 - 1/51
P = 50/51
Q = 1/1.3 + 1/3.5 + ... + 1/19.21
Q = 1/2 .(2/1.3 + 2/3.5 + ... + 2/19.21)
Q = 1/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/19 - 1/21)
Q = 1/2 . (1 - 1/21)
Q = 1/2. 20/21
Q = 10/21
Ủng hộ mk nha ^_-
\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(P=1-\frac{1}{51}\)
\(P=\frac{50}{51}\)
\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(Q=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\frac{20}{21}\)
\(Q=\frac{10}{21}\)
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21
Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21
= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21
= 1-1/21 = 20/21
=> B= 20/21 : 2 => B= 10/21
b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2
=> A= 1/2- 1/2n+1
=> A< 1/2 ( đpcm )
a. \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3-1}{3}=\dfrac{2}{3}\); \(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5-3}{15}=\dfrac{2}{15}\)
b. Ta có \(VP=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\) mà \(VP=\dfrac{2}{3}\) \(\Rightarrow VT=VP\)
Ta có \(VP=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\) mà \(VP=\dfrac{2}{3.5}=\dfrac{2}{15}\) \(\Rightarrow VT=VP\)
c. \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
\(=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}+\dfrac{1}{99.101}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\left(1-\dfrac{1}{101}\right)\) \(=\dfrac{200}{101}\)
a: \(\dfrac{1}{1}-\dfrac{1}{3}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
b: \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)
c: Ta có: \(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2009\cdot2011}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2010}{2011}=\dfrac{1005}{2011}\)