chứng minh rằng
nếu a2 = b.c suy ra \(\frac{a+b}{a-b}\)= \(\frac{c+a}{c-a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\frac{a-b+2b}{a-b}=\frac{c-a+2a}{c-a}\)\(\Leftrightarrow1+\frac{2b}{a-b}=1+\frac{2a}{c-a}\)
\(\Leftrightarrow\frac{2b}{a-b}=\frac{2a}{c-a}\)\(\Rightarrow\)2b . (c - a) = 2a . (a - b) \(\Rightarrow\) 2bc - 2ba = 2a2 - 2ab
\(\Leftrightarrow\) 2bc = 2a2 \(\Leftrightarrow\) bc = a2 (điều phải chứng minh)
Từ giả thiết suy ra :\(\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
Hay \(ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Leftrightarrow-\left(a^2-bc+ab\right)=-\left(bc-a^2+ab\right)\)(bớt ac ở mỗi vế
\(\Leftrightarrow a^2-bc+ab=bc-a^2+ab\) (nhân hai vế với -1)
\(\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\) (chuyển vế + chia cả hai vế cho 2)
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\Rightarrow bc-a^2=a^2-bc\)\(\Rightarrow bc=2a^2-bc\Rightarrow2a^2=2.bc\Rightarrow a^2=bc\)
Bài 1 :
a) \(C=\frac{-4}{\left(2x-3\right)^2+5}\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy....
b) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Leftrightarrow ac-a^2-ab-ac+ab-a^2=-bc-bc\)
\(\Leftrightarrow-2a^2=-2bc\)
\(\Leftrightarrow a^2=bc\left(đpcm\right)\)
b) a+b/a-b = c+a/c-a
=> (a+b).(c-a) = (a-b).(c+a)
<=> (a+b).c - (a+b).a = (a-b).c + (a-b).a
<=> ac+bc - a^2-ba = ac-bc + a^2 - ba
<=> ac -ac + bc + bc -ba +ba = a^2 +a^2
<=> 2bc = 2a^2
<=> bc = a^2 (đccm)
Chúc bạn hc tốt
Thay vì áp dụng t/c dãy tỉ số bằng nhau,ta áp dụng cách đặt k cho ngắn! =)
a) Chứng minh: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Đặt \(a^2=bc=k\Rightarrow\frac{a}{c}=\frac{b}{a}=k\Rightarrow\hept{\begin{cases}a=kc\\b=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kc+ka}{kc-ka}=\frac{k\left(c+a\right)}{k\left(c-a\right)}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
b)Bạn tham khảo bài của Đỗ Ngọc Hải ở đây nhé: Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> (a + b).(c - a) = (c + a).(a - b)
=> (a + b).c - (a + b).a = (c + a).a - (c + a).b
=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b
=> b.c - a2 = a2 - b.c
=> b.c + b.c = a2 + a2
=> 2.b.c = 2.a2
=> b.c = a2 (đpcm)
Cách 1:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)
Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:
\(a+b=k\left(a-b\right)\) và \(c+a=k\left(c-a\right)\)
\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\) và \(c\left(1+k\right)=a\left(-k-1\right)\)
\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\) và \(\frac{c}{a}=\frac{k+1}{k-1}\)
Từ hai đẳng thức cuối ta được:
\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)
Vậy.......
mih nè
k cho mih
\(a^2=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)
\(\left(1\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}\)
\(\left(2\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)( Đổi chỗ trung tỉ ) (ĐPCM)